Skip to main content
Log in

Tuning the gel size and LCST of N-isopropylacrylamide nanogels by anionic fluoroprobe

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Varying size fluorescent N-isopropylacrylamide (NIPAM) nanogels were synthesized from 140 to 550 nm by precipitation copolymerization. N,N-methylenebisacrylamide (BIS) and ammonium persulfate APS were used as cross-linker and initiator, respectively. 8-Hydroxypyrene-1,3,6-trisulfonic Acid (Pyranine, Py) molecules were used for controlling the particle size and lower critical solution temperature (LCST) of nanogels. NIPAM, BIS and APS amount were kept constant and Py amount changed to tailor the particle size. Fluorescence spectroscopy, atomic force microscopy and light scattering methods show that Py caused smaller size nanogels due to the electrically charged \( S{O}_3^{-} \)side groups. Additionally, as seen from the light scattering experiment, LCST of nanogels is getting decrease considerably with increasing Py amount. Using of Py for tuning, the gel size and LCST were found very useful, easy and effective way, and it can be used for many biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85(1):1–33. doi:10.1016/s0001-8686(99)00023-8

    Article  CAS  Google Scholar 

  2. Schild HG (1992) Poly (N-isopropylacrylamide)—experiment, theory and application. Prog Polym Sci 17(2):163–249. doi:10.1016/0079-6700(92)90023-r

    Article  CAS  Google Scholar 

  3. Chee CK, Rimmer S, Soutar I, Swanson L (2011) Time-resolved fluorescence anisotropy studies of the interaction of N-isopropyl acrylamide based polymers with sodium dodecyl sulphate. Soft Matter 7(10):4705–4714. doi:10.1039/c1sm05436h

    Article  CAS  Google Scholar 

  4. Taylor LD, Cerankowski LD (1975) Preparation of films exhibiting a balanced temperature-dependence to permeation by aqueous-solutions—study of lower consolute behavior. Journal of Polymer Science Part a-Polymer Chemistry 13(11):2551–2570. doi:10.1002/pol.1975.170131113

    Article  CAS  Google Scholar 

  5. Winnik FM (1990) Phase-transition of aqueous poly-(N-isopropylacrylamide) solutions—a study by nonradiative energy-transfer. Polymer 31(11):2125–2134. doi:10.1016/0032-3861(90)90085-d

    Article  CAS  Google Scholar 

  6. Sun QH, Deng YL (2005) In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. J Am Chem Soc 127(23):8274–8275. doi:10.1021/ja051487k

    Article  CAS  Google Scholar 

  7. Braun O, Selb J, Candau F (2001) Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropylacrylamide. Polymer 42(21):8499–8510. doi:10.1016/s0032-3861(01)00445-1

    Article  CAS  Google Scholar 

  8. Pich A, Richtering W (2010) Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization. In: Pich A, Richtering W (eds) Chemical Design of Responsive Microgels, vol 234, Advances in Polymer Science, pp. 1–37. doi:10.1007/12_2010_70

    Chapter  Google Scholar 

  9. Janczewski D, Tomczak N, Han M-Y, Vancso GJ (2009) Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST. Eur Polym J 45(7):1912–1917. doi:10.1016/j.eurpolymj.2009.04.005

    Article  CAS  Google Scholar 

  10. Meng Z, Smith MH, Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287(3):277–285. doi:10.1007/s00396-008-1986-8

    Article  CAS  Google Scholar 

  11. Teng D, Hou J, Zhang X, Wang X, Wang Z, Li C (2008) Glucosamine-carrying temperature- and pH-sensitive microgels: preparation, characterization, and in vitro drug release studies. J Colloid Interface Sci 322(1):333–341. doi:10.1016/j.jcis.2009.03.014

    Article  CAS  Google Scholar 

  12. Nagaoka N, Safranj A, Yoshida M, Omichi H, Kubota H, Katakai R (1993) Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and cross-linking. Macromolecules 26(26):7386–7388. doi:10.1021/ma00078a046

    Article  CAS  Google Scholar 

  13. Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Hydrogel Microspheres 0.3. Temperature-Dependent Adsorption of Proteins on Poly-N-Isopropylacrylamide Hydrogel Microspheres. Colloid Polym Sci 270(1):53–57. doi:10.1007/bf00656929

    Article  CAS  Google Scholar 

  14. Zhu X, Gu X, Zhang L, Kong X-Z (2012) Preparation and characterization of nanosized P(NIPAM-MBA) hydrogel particles and adsorption of bovine serum albumin on their surface. Nanoscale Res Lett 7. doi:10.1186/1556-276x-7-519

  15. Zhu PW, Napper DH (1996) Effects of anionic surfactant on the coil-to-globule transition of interfacial poly(N-isopropylacrylamide). Langmuir 12(25):5992–5998. doi:10.1021/la9603737

    Article  CAS  Google Scholar 

  16. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42(17):7468–7483. doi:10.1039/c2cs35191a

    Article  CAS  Google Scholar 

  17. Yilmaz Y, Gelir A, Alveroglu E, Uysal N (2008) Testing percolation theory in the laboratory: measuring the critical exponents and fractal dimension during gelation. Phys Rev E 77(5). doi:10.1103/PhysRevE.77.051121

  18. Alveroglu E, Gelir A, Yilmaz Y (2009) Swelling behavior of chemically ion-doped hydrogels. Macromol Symp 281:174–180. doi:10.1002/masy.200950723

    Article  CAS  Google Scholar 

  19. Alveroglu E, Yilmaz Y (2011) Estimation of the generation and the weight fraction of dense polymer regions in heterogeneous hydrogels. Macromol Chem Phys 212(14):1451–1459. doi:10.1002/macp.201100161

    Article  CAS  Google Scholar 

  20. Iwai K, Matsumura Y, Uchiyama S, de Silva AP (2005) Development of fluorescent microgel thermometers based on thermo responsive polymers and their modulation of sensitivity range. J Mater Chem 15(27–28):2796–2800. doi:10.1039/b502277k

    Article  CAS  Google Scholar 

  21. Gu X, Zhu X, Kong X, Zhang L, Tan Y, Lu Y (2009) Preparation of polymer uniform microspheres via precipitation polymerization in ethanol or ethanol-water mixture as new solvent. Acta Chim Sin 67(21):2486–2494

    CAS  Google Scholar 

  22. Yilmaz Y, Uysal N, Gelir A, Guney O, Aktas DK, Gogebakan S, Oner A (2009) Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 72(2):332–338. doi:10.1016/j.saa.2008.09.012

    Article  Google Scholar 

  23. Gelir A, Yilmaz I, Yilmaz Y (2007) In situ monitoring of the synthesis of a pyranine-substituted phthalonitrile derivative via the steady-state fluorescence technique. J Phys Chem B 111(2):478–484. doi:10.1021/jp064462w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Yaşar Yılmaz (Department of Physics Engineering, Istanbul Technical University) for his laboratory facilities and Prof. Dr. Fatma Z. Tepehan (Department of Physics Engineering, Istanbul Technical University) for AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Alveroglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koc, K., Alveroglu, E. Tuning the gel size and LCST of N-isopropylacrylamide nanogels by anionic fluoroprobe. Colloid Polym Sci 294, 285–290 (2016). https://doi.org/10.1007/s00396-015-3779-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3779-1

Keywords

Navigation