Skip to main content

Advertisement

Log in

Adsorption of polyprotic acid at the water/air interface

Effect of counter ion and pH on surface activity of FeIII-EDTA complex

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bernal JD, Fowler RH (1933) J Chem Phys 1:515

    Article  CAS  Google Scholar 

  2. Samoilov (1965) Structure of aqueous electrolyte solutions and hydration of ions. Consultants Bureau, New York

    Google Scholar 

  3. Ohtaki H, Radnai T (1993) Chem Rev 93:1157

    Article  CAS  Google Scholar 

  4. Mähler J, Persson I (2012) Inorg Chem 51(425). doi:10.1021/ic2018693

  5. Onsager L, Samaras NNT (1934) J Chem Phys 2:528. doi:10.1063/1.1749522

    Article  CAS  Google Scholar 

  6. Gouy LG (1910) J de Physique Théorique et Appliquée 9(4):457. doi:10.1051/jphystap:019100090045700

    Article  CAS  Google Scholar 

  7. Chapman DL (1913) Phylos Mag Ser 6 25(148):475. doi:10.1080/14786440408634187

    Article  Google Scholar 

  8. Spaarnay MJ (1958) Recueil des Travaux Chimiques des Pays-Bas 77(9):872. doi:10.1002/recl.19580770911

    Article  Google Scholar 

  9. Ninham BW, Yaminsky V (1997) Langmuir 13(7):2097

    Article  CAS  Google Scholar 

  10. Ruckenstein E, Schiby D (1985) Langmuir 1(5):612

    Article  CAS  Google Scholar 

  11. Manciu M, Ruckenstein E (2002) Langmuir 18(13):5178

    Article  CAS  Google Scholar 

  12. Manciu M, Ruckenstein E (2003) Adv Colloid Inter Sci 105(1):63

    Article  CAS  Google Scholar 

  13. Weissenborn P, Pugh RJ (1996) J Colloid Inter Sci 184(2):550

    Article  CAS  Google Scholar 

  14. Lambert JL, Godsey CE, Seitz LM (1963) Inorg Chem 2(1):127. doi:10.1021/ic50005a033

    Article  CAS  Google Scholar 

  15. Motekaitis RJ, Martell AE, Hayes D, Frenier WW (1980) Can J Chem 58(19):1999. doi:10.1139/v80-318

    Article  CAS  Google Scholar 

  16. Motomura K (1978) J Colloid Interface Sci 64:348

    Article  CAS  Google Scholar 

  17. Ikeda S (1977) Bull Chem Soc Japan 50(6):1403

    Article  CAS  Google Scholar 

  18. Takeda M (1986) Hyper Inter 28(1–4):737

    Article  CAS  Google Scholar 

  19. Sakamoto H, Murao A, Hayami Y (2002) J ITE Japan 56(10):1643

    Article  Google Scholar 

  20. Motomura K, Iwanaga S, Hayami Y, Uryu S, Matuura R (1981) J Colloid Interface Sci 80(1):32

    Article  CAS  Google Scholar 

  21. Buch V, Milet A, Vácha R, Jungwirth P, Devlin JP (2007) Proc Nat Acad Sci 104(18):7342. doi:10.1073/pnas.0611285104

    Article  CAS  Google Scholar 

  22. Jungwirth P (2009) Faraday Discuss 141:9. doi:10.1039/b816684f

    Article  CAS  Google Scholar 

  23. Beattie JK, Djerdjev AM, Warr GG (2009) Faraday Discussions 141:31. doi:10.1039/b805266b

    Article  CAS  Google Scholar 

  24. Gray-Weale A, Beattie JK (2009). Physical Chemistry Chemical Physics 11(46):10994. doi:10.1039/b901806a

    Article  CAS  Google Scholar 

  25. Manciu M, Ruckenstein E (2012) Colloids Surf A 400:27. doi:10.1016/j.colsurfa.2012.02.038

    Article  CAS  Google Scholar 

  26. Manciu M, Ruckenstein E (2012) Colloids Surf A 404:93. doi:10.1016/j.colsurfa.2012.04.020

    Article  CAS  Google Scholar 

  27. Takahashi M (2005) J Phys Chem B 109(46):21858. doi:10.1021/jp0445270

    Article  CAS  Google Scholar 

  28. Li C, Somasundaran P (1991) J Colloid Inter Sci 146(1):215

    Article  CAS  Google Scholar 

  29. Tarbuck TL, Ota ST, Richmond GL (2006) J Am Chem Soc 128:14519. doi:10.1021/ja063184b

    Article  CAS  Google Scholar 

  30. Takagi S (1991) Mugineic Acid. Hakuyusya Press, Tokyo, pp 5–21

  31. Sakaguchi T, Nishizawa NK, Nakanishi H, Yoshimura E, Mori S (1999). Plant Soil 215(2):221

    Article  CAS  Google Scholar 

  32. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Nature 409:346

    Article  CAS  Google Scholar 

  33. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) J Biol Chem 284:3470

    Article  CAS  Google Scholar 

  34. Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Plant Physiol 150:786

    Article  CAS  Google Scholar 

  35. Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) Plant J 46:563

    Article  CAS  Google Scholar 

  36. Landsberg EC (1981) J Plant Nutr 3:579

    Article  CAS  Google Scholar 

  37. Alam S, Kamei S, Kawai S (2001) J Plant Nutr 47(3):643. doi:10.1080/00380768.2001.10408428

    CAS  Google Scholar 

  38. Nomoto K, Sugiura Y, Takagi SMugineic acids, studies on phytosiderophores (VCH Verlagsgesellschaft Weinhelm, FRG, 1987), pp 401–425

Download references

Acknowledgments

M. V. thanks Professor Emeritus Akira Nagasawa of Graduate School of Science and Engineering, Saitama University for the fruitful discussion and Associate Professor Takashi Fujihara of Graduate School of Science and Engineering, Saitama University for the X-ray crystallography measurement on Fe III(H 2O)(Hedta) crystal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Villeneuve.

Appendix

Appendix

Partial differentiations of α 1, α 2, δ and \(m_{\text {OH}^{-}}\) with respect to m i

It would be easier if the partial derivatives ( α 1/ m i ) T, p, m ji , ( α 2/ m i ) T, p, m ji , ( δ/ m i ) T, p, m ji , and \((\partial m_{\text {OH}^{-}} / \partial m_{i})_{T,p, m_{j\not = i}}\) can be calculated numerically. Partial differentiation of p K a1, p K a2, and p K d and Eq. 22 combined with Eqs. 914, with respect to m i (i = 1 or 2) give the following relations. Namely, \((\partial \mathrm {p}K_{\mathrm {a}_{1}} / \partial m_{i})_{T,p,m_{j\not = i}} = -(\partial \log a_{\mathrm {c}1-} / \partial m_{i})_{T,p,m_{j\not = i}} + (\partial \text {pH} / \partial m_{i})_{T,p,m_{j\not = i}} + (\partial \log a_{\mathrm {c}0} / \partial m_{i})_{T,p,m_{j\not = i}}\) gives

$$\begin{array}{@{}rcl@{}} &&{\kern-.7pc}\frac{1}{\ln{\kern-1.5pt} 1{\kern-.5pt}0}{}\left\{ {}-{}\frac{1}{m_{{\kern-.5pt}\text{OH}^{-}}}{\kern-2.7pt}\left({\kern-.5pt}\frac{\partial m_{\text{OH}^{-}}}{\partial m_{i}}{\kern-.5pt}\right)_{{}T{\kern-.2pt},{\kern-.2pt}p{\kern-.2pt},{\kern-.2pt}m_{j\not= i}}{\kern-3.3pt}+{}\frac{1}{\alpha_{{\kern-.5pt}1}{}({\kern-.5pt}1{}-{}\alpha_{{\kern-.5pt}1}{\kern-.7pt})}{\kern-2.5pt}\left({\kern-.6pt}\frac{\partial \alpha_{1}}{\partial {\kern-.5pt}m_{{\kern-.5pt}i}}{\kern-.6pt}\right)_{{\kern-1.5pt}T{\kern-.5pt},{\kern-.5pt}p{\kern-.5pt},{\kern-.5pt}m_{{\kern-.5pt}j{\kern-.5pt}\not= i}}\right.\\ &&\left.{\kern1.5pc}-\frac{1}{1-\alpha_{2}}\left(\frac{\partial \alpha_{2}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}\right\} \\ &&{\kern10pt}={}\left({\kern-.5pt}\frac{\partial{} \log {}\gamma_{\text{OH}^{-}}}{\partial m_{i}}{\kern-.5pt}\right)_{{}T,p,m_{j\not=i}}{}-{}\left(\frac{\partial \log \gamma_{\mathrm{c}1-}}{\partial m_{i}}\right)_{{}T,p,m_{j\not= i}} {\kern-.5pt}; \end{array} $$
(50)

\((\partial \mathrm {p}K_{\mathrm {a}_{2}} / \partial m_{i})_{T,p,m_{j\not = i}} = -(\partial \log a_{\mathrm {c}2-} / \partial m_{i})_{T,p,m_{j\not = i}} \\+ (\partial \text {pH} / \partial m_{i})_{T,p,m_{j\not = i}} + (\partial \log a_{\mathrm {c}1-} / \partial m_{i})_{T,p,m_{j\not = i}}\) gives

$$\begin{array}{@{}rcl@{}} &&\frac{1}{\ln10}\left\{ -\frac{1}{m_{\text{OH}^{-}}}\left(\frac{\partial m_{\text{OH}^{-}}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}+\frac{1}{\alpha_{2}(1-\alpha_{2})}\right.\notag\\ &&{\kern2.2pc}\left.\times\left(\frac{\partial \alpha_{2}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}-\frac{2}{1-2\delta}\left(\frac{\partial \delta}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}\right\}\\ &&{\kern2pc}=\left(\frac{\partial \log \gamma_{\text{OH}^{-}}}{\partial m_{i}}\right)_{T,p,m_{j\not=i}}+\left(\frac{\partial \log \gamma_{\mathrm{c}1-}}{\partial m_{i}}\right)_{T,p,m_{j\not=i}}\notag\\ &&{\kern2.2pc}-\left(\frac{\partial \log \gamma_{\mathrm{c}2-}}{\partial m_{i}}\right)_{T,p,m_{j\not=i}} ; \end{array} $$
(51)

\((\partial \mathrm {p}K_{\mathrm {d}} / \partial m_{i})_{T,p,m_{j\not = i}} = -(\partial \log a_{\text {cd}} / \partial m_{i})_{T,p,m_{j\not = i}} - (\partial \text {pH} / \partial m_{i})_{T,p,m_{j\not = i}} + 2(\partial \log a_{\text {cd}} / \partial m_{i})_{T,p,m_{j\not = i}}\) gives

$$\begin{array}{@{}rcl@{}} &&{}\frac{1}{\ln10}\left\{ \frac{1}{\alpha_{1}}\left(\frac{\partial \alpha_{1}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}+\frac{1}{\alpha_{2}}\left(\frac{\partial \alpha_{2}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}\right.\notag\\[6pt] &&{\kern1.6pc}\left.-\frac{1+2\delta}{\delta(1-2\delta)}\left(\frac{\partial \delta}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}\right\}\nonumber\\[6pt] &&{\kern.5pc}=-\frac{1}{(\ln 10) m_{2}}\chi(i) -2\left(\frac{\partial \log \gamma_{\mathrm{c}2-}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}}\notag\\[6pt] &&{\kern1.5pc}+\left(\frac{\partial \log \gamma_{\mathrm{cd}}}{\partial m_{i}}\right)_{T,p,m_{j\not= i}} , \end{array} $$
(52)

with χ(i) being

$$\begin{array}{@{}rcl@{}} \chi(i) &=&0, (i=1)\\ &=&1, (i= 2); \end{array} $$
(53)

and \(\left \{\partial \left (m_{\text {OH}^{-}} -\frac {K_{\mathrm {w}}}{\gamma _{\mathrm {H}^{+}}\gamma _{\text {OH}^{-}}m_{\text {OH}^{-}}}\right )/ \partial m_{i}\right \}_{T,p,m_{j\not = i}} = \left [ \partial \{m_{1} -m_{2} \alpha _{1} (1+\alpha _{2})\} / \partial m_{i} \right ]_{T,p,m_{j\not = i}}\) gives

$$\begin{array}{@{}rcl@{}} &&{}\left(\frac{\partial m_{\text{OH}^{-}}}{\partial m_{1}}\right)_{T,p,m_{2}}= A \left[1-m_{2}(1+\alpha_{2})\left(\frac{\partial \alpha_{1}}{\partial m_{1}}\right)_{T,p,m_{2}}\right.\notag\\ &&{\kern8pc}-m_{2}\alpha_{1}\left. \left(\frac{\partial \alpha_{2}}{\partial m_{1}}\right)_{T,p,m_{2}}\right.\\ &&{\kern8pc}-\frac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\left\{\left(\frac{\partial \log \gamma_{\mathrm{H}^{+}}}{\partial m_{1}}\right)_{T,p,m_{2}}\right.\notag\\ &&{\kern8pc}\left.\left.+\left(\frac{\partial \log \gamma_{\text{OH}^{-}}}{\partial m_{1}}\right)_{T,p,m_{2}} \right\} \right]\\ \end{array} $$
(54)

and

$$\begin{array}{@{}rcl@{}} &&\left(\frac{\partial m_{\text{OH}^{-}}}{\partial m_{2}}\right)_{T,p,m_{1}}\!\!= A \left[{\vphantom{\frac{\partial \alpha_{2}}{\partial m_{2}}}}-\alpha_{1}(1+\alpha_{2})-m_{2}(1+\alpha_{2})\right.\notag\\ &&{\kern6.5pc}\times \left(\frac{\partial \alpha_{1}}{\partial m_{2}}\right)_{T,p,m_{1}}\!\!-m_{2}\alpha_{1} \left(\frac{\partial \alpha_{2}}{\partial m_{2}}\right)_{T,p,m_{1}}\notag\\ &&{\kern6.5pc}-\frac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\left\{\left(\frac{\partial \log \gamma_{\mathrm{H}^{+}}}{\partial m_{2}}\right)_{T,p,m_{1}}\right.\notag\\ &&{\kern6.5pc}\left.\left.+\left(\frac{\partial \log \gamma_{\text{OH}^{-}}}{\partial m_{2}}\right)_{T,p,m_{1}} \right\}\right]. \end{array} $$
(55)

Thus, partial derivatives of the molality of hydroxide ion \(m_{\text {OH}^{-}}\), the degrees of dissociation of the complex α 1 and α 2, and the degree of dimerization of the complex δ with respect to the molality of sodium hydroxide, m 1 constitutes the following simultaneous linear equations.

$$ M\left(\begin{array}{c} \left(\frac{\partial m_{\text{OH}^{-}}}{\partial m_{1}}\right)_{T,p,m_{2}}\\ \\\left(\frac{\partial \alpha_{1}}{\partial m_{1}}\right)_{T,p,m_{2}}\\ \\\left(\frac{\partial \alpha_{2}}{\partial m_{1}}\right)_{T,p,m_{2}}\\ \\\left(\frac{\partial \delta}{\partial m_{1}}\right)_{T,p,m_{2}} \end{array} \right) =\left(\begin{array}{c} 1\\ \\ 0\\ \\ 0\\ \\ 0 \end{array} \right) , $$
(56)

where

$$\begin{array}{@{}rcl@{}} M \equiv\left( \begin{array}{@{\,} cccc@{\,}} \dfrac{1}{A}+(\ln 10)\dfrac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D} & m_{2}\left\{(1+\alpha_{2})+{\vphantom{\left.\dfrac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D}(1+2\delta)\right\}}}(\ln 10)\times\right. &m_{2}\alpha_{1}\left\{1 +{\vphantom{\left.\dfrac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D}(1+2\delta)\right\}}}2(\ln 10)\times \right.&4m_{2}(\ln 10)\dfrac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D} \alpha_{2}\\ &\left.\dfrac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D}(1+2\alpha_{2} +4\alpha_{2} \delta)\right\}&\left.\dfrac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D}(1+2\delta)\right\}&\\ &&&\\ -\dfrac{1}{m_{\mathrm{OH}^{-}}} & \dfrac{1}{\alpha_{1}(1-\alpha_{1})} & -\dfrac{1}{1-\alpha_{2}} & 0 \\ &&&\\ -\dfrac{1}{m_{\mathrm{OH}^{-}}}+(\ln 10)\mathcal{D} & m_{2} (\ln 10)\mathcal{D}\times & \dfrac{1}{\alpha_{2}(1-\alpha_{2})} +2m_{2}\times & -\dfrac{2}{1-2\delta}+\\ &(1+2\alpha_{2} +4\alpha_{2} \delta)&(\ln 10)\mathcal{D} \alpha_{1} (1+2\delta) & 4m_{2} (\ln 10)\mathcal{D}\alpha_{1} \alpha_{2}\\ &&&\\ -4(\ln 10) \mathcal{D} & \dfrac{1}{\alpha_{1}}-4m_{2}(\ln 10)\times & \dfrac{1}{\alpha_{2}}-8m_{2}(\ln 10) \times & -\dfrac{1+2\delta}{\delta(1-2\delta)}-\\ &\mathcal{D}(1+2\alpha_{2}+4\alpha_{2} \delta) & \mathcal{D}\alpha_{1}(1+2\delta) &16m_{2}(\ln 10)\mathcal{D}\alpha_{1} \alpha_{2}\\\end{array}\right) \end{array} $$
(57)

where 𝒟 is defined by

$$ \mathcal{D} \equiv \left\{ \frac{-\mathcal{A}}{\sqrt{I}(1+\sqrt{I})^{2}}+0.2 \right\} $$
(58)

Similarly, partial derivatives of \(m_{\text {OH}^{-}}\), α 1, α 2, and δ with respect to m 2 constitute the following simultaneous equations.

$$ M\left(\begin{array}{c} \left(\frac{\partial m_{\text{OH}^{-}}}{\partial m_{2}}\right)_{T,p,m_{1}}\\ \\ \left(\frac{\partial \alpha_{1}}{\partial m_{2}}\right)_{T,p,m_{1}}\\ \\ \left(\frac{\partial \alpha_{2}}{\partial m_{2}}\right)_{T,p,m_{1}}\\ \\ \left(\frac{\partial \delta}{\partial m_{2}}\right)_{T,p,m_{1}} \end{array} \right) = \left(\begin{array}{c} -\alpha_{1} (1+\alpha_{2})-(\ln 10)\frac{a_{\mathrm{H}^{+}}}{\gamma_{\mathrm{H}^{+}}}\mathcal{D}\alpha_{1} (1+2\alpha_{2} +4\alpha_{2} \delta)\\ \\ 0\\ \\ -(\ln 10)\mathcal{D}\alpha_{1} (1+2\alpha_{2} +4\alpha_{2} \delta)\\ \\ -\frac{1}{m_{2}} +4(\ln 10)\mathcal{D}\alpha_{1} (1+2\alpha_{2} +4\alpha_{2} \delta) \end{array} \right) $$
(59)

The partial derivatives \((\partial m_{\text {OH}^{-}} /\partial m_{i})_{T,p,m_{j\neq i}}\), ( α 1/ m i ) T, p, m ji , ( α 2/ m i ) T, p, m ji , and ( δ/ m i ) T, p, m ji (i = 1 or 2) are obtained by solving the above simultaneous equations by using Cramer’s rule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villeneuve, M., Tanaka, M., Abe, M. et al. Adsorption of polyprotic acid at the water/air interface. Colloid Polym Sci 292, 2335–2348 (2014). https://doi.org/10.1007/s00396-014-3203-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3203-2

Keywords

Navigation