Skip to main content
Log in

Approximate analytic expression for the electrophoretic mobility of a cylindrical colloidal particle. Relaxation effect

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An approximate expression is derived for the electrophoretic mobility μ of an infinitely long cylindrical particle of radius a and zeta potential ζ oriented perpendicular to an applied electric field in an electrolyte solution. The obtained expression is applicable for cylinders with large radii such that κa≥ca. 30, where κ is the Debye–Hückel parameter. It is shown that the obtained mobility expression μ , which consists of Smoluchowski’s equation and the correction term of the order of exp(zeζ∣/2kT)/κa (where z is the valence of counterions in the electrolyte solution, e is the elementary electric charge, k is Boltzmann’s constant, and T is the absolute temperature), coincides with the mobility expression for a sphere of radius a and zeta potential ζ correct to the order of exp(zeζ∣/2kT)/κa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Smoluchowski M (1921) In Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Vol 2, p. 366. Barth, Leipzig

  2. Hückel E (1924) Phys Z 25:204

    Google Scholar 

  3. Henry DC (1931) Proc R Soc London Ser A 133:106

    Article  CAS  Google Scholar 

  4. Overbeek JTG (1943) Kolloid Beih 54:287

    CAS  Google Scholar 

  5. Booth F (1950) Proc R Soc London Ser A 203:514

    Article  CAS  Google Scholar 

  6. Wiersema PH, Loeb AL, Overbeek JTG (1966) J Colloid Interface Sci 22:78

    Article  CAS  Google Scholar 

  7. O'Brien RW, White LR (1978) J Chem Soc Faraday Trans 2(74):1607

    Article  Google Scholar 

  8. Dukhin SS, Semenikhin NM (1970) Kolloid Zh 32:360

    CAS  Google Scholar 

  9. Dukhin SS, Derjaguin BV (1974) In: Matievic E (ed) Surface and colloid science, vol 2. John Wiley & Sons, Hoboken

    Google Scholar 

  10. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  11. O'Brien RW, Hunter RJ (1981) Can J Chem 59:1878

    Article  Google Scholar 

  12. Ohshima H, Healy TW, White LR (1983) J Chem Soc Faraday Trans 2(79):1613

    Article  Google Scholar 

  13. van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  14. Hunter RJ (1989) Foundations of colloid science, vol 2. Clarendon Press Univ Press, Oxford

    Google Scholar 

  15. Dukhin SS (1993) Adv Colloid Interface Sci 44:1

    Article  CAS  Google Scholar 

  16. Ohshima H (1994) J Colloid Interface Sci 168:269

    Article  CAS  Google Scholar 

  17. Lyklema J (1995) Fundamentals of interface and colloid science, solid–liquid interfaces, vol 2. Academic Press, New York

    Google Scholar 

  18. Ohshima H, Furusawa K (eds) (1998) Electrical phenomena at interfaces, fundamentals, measurements, and applications, 2nd ed, revised and expanded. Dekker, New York

    Google Scholar 

  19. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  20. Ohshima H (2001) J Colloid Interface Sci 239:587

    Article  CAS  Google Scholar 

  21. Ohshima H (2003) J Colloid Interface Sci 26:337

    Article  Google Scholar 

  22. Ohshima H (2004) J Colloid Interface Sci 275:665

    Article  CAS  Google Scholar 

  23. Ohshima H (2005) Colloids Surf A Physicochem Eng Asp 267:50

    Article  CAS  Google Scholar 

  24. Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-, nano-, atto-engineering, CRC Press, Boca Raton

  25. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  26. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  27. Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  28. Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. John Wiley & Sons, Hoboken

    Google Scholar 

  29. van der Drift WPJT, de Keizer A, Overbeek JTG (1979) J Colloid Interface Sci 71:67

    Article  Google Scholar 

  30. Abramson HA, Gorin MH, Moyer LS (1939) Chem Rev 24:345

    Article  CAS  Google Scholar 

  31. de Keizer A, van der Drift WPJT, Overbeek JTG (1975) Biophys Chem 3:107

    Article  CAS  Google Scholar 

  32. Stigter D (1975) J Colloid Interface Sci 53:296

    Article  CAS  Google Scholar 

  33. Stigter D (1978) J Phys Chem 82:1417

    Article  CAS  Google Scholar 

  34. Stigter D (1978) J Phys Chem 82:1424

    Article  CAS  Google Scholar 

  35. Stigter D (1979) J Phys Chem 83:1663

    Article  CAS  Google Scholar 

  36. Ohshima H (1996) J Colloid Interface Sci 180:299

    Article  CAS  Google Scholar 

  37. Buitenhuis J (2012) Langmuir 28:13354

    Article  CAS  Google Scholar 

  38. Kobayashi M (2008) Colloid Polym Sci 286:925

    Article  Google Scholar 

  39. Chassagne C, Ibanez M (2013) Pure Appl Chem 85:41

    CAS  Google Scholar 

  40. Kobayashi M, Sasaki A (2014) Colloids Surf A Physicochem Eng Asp 440:74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohshima, H. Approximate analytic expression for the electrophoretic mobility of a cylindrical colloidal particle. Relaxation effect. Colloid Polym Sci 292, 1227–1233 (2014). https://doi.org/10.1007/s00396-014-3171-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3171-6

Keywords

Navigation