Skip to main content

Advertisement

Log in

Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Novel organic–inorganic hybrid nanoparticles consisting of polymer–hydrogel nanoparticles (nanogels) and iron oxide were developed for potential biomedical applications. Hybrid nanoparticles were prepared by a simple procedure using polysaccharide nanogels as a reactive site for iron oxide formation. The hybrid nanoparticles have a narrow size distribution with a diameter of approximately 30 nm and show high colloidal stability. These nanohybrid particles could be used as a contrast medium for magnetic resonance imaging or for magnetic hyperthermia therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lebeau B, Innocenzi P (2011) Chem Soc Rev 40:886

    Article  CAS  Google Scholar 

  2. Zheng H, Li Y, Liu H, Yin X, Li Y (2011) Chem Soc Rev 40:4506

    Article  CAS  Google Scholar 

  3. Radt B, Smith TA, Caruso F (2004) Adv Mater 16:2184

    Article  CAS  Google Scholar 

  4. Sanchez C, Soler-Illia GJAA, Ribot F, Grosso D (2003) C R Chim 6:1131

    Article  CAS  Google Scholar 

  5. Angelatos AS, Katagiri K, Caruso F (2006) Soft Matter 2:18

    Article  CAS  Google Scholar 

  6. Tao X, Li J, Möhwald H (2004) Chem Eur J 10:3397

    Article  CAS  Google Scholar 

  7. Hu SH, Tsai CH, Liao CF, Liu DM, Chen SY (2008) Langmuir 24:11811

    Article  CAS  Google Scholar 

  8. Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S (2011) Small 7:1683

    Article  CAS  Google Scholar 

  9. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Macromolecules 26:3062

    Article  CAS  Google Scholar 

  10. Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K (2002) Langmuir 18:3780

    Article  CAS  Google Scholar 

  11. Nishikawa T, Akiyoshi K, Sunamoto J (1994) Macromolecules 27:7654

    Article  CAS  Google Scholar 

  12. Nishikawa T, Akiyoshi K, Sunamoto J (1996) J Am Chem Soc 118:6110

    Article  CAS  Google Scholar 

  13. Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J (1998) J Control Release 54:313

    Article  CAS  Google Scholar 

  14. Ikuta Y, Katayama N, Wang L, Okugawa T, Takahashi Y, Schmitt M, Gu X, Watanabe M, Akiyoshi K, Nakamura H, Kuribayashi K, Sunamoto J, Shiku H (2002) Blood 99:3717

    Article  CAS  Google Scholar 

  15. Hasegawa U, Nomura S-i M, Kaul SC, Hirano T, Akiyoshi K (2005) Biochem Biophys Res Commun 331:917

    Article  CAS  Google Scholar 

  16. Nomura Y, Ikeda M, Yamaguchi N, Aoyama Y, Akiyoshi K (2003) FEBS Lett 553:271

    Article  CAS  Google Scholar 

  17. Hirakura T, Nomura Y, Aoyama Y, Akiyoshi K (2004) Biomacromolecules 5:1804

    Article  CAS  Google Scholar 

  18. Nomura Y, Sasaki Y, Takagi M, Narita T, Aoyama Y, Akiyoshi K (2005) Biomacromolecules 6:447

    Article  CAS  Google Scholar 

  19. Sugawara A, Yamane S, Akiyoshi K (2006) Macromol Rapid Commun 27:441

    Article  CAS  Google Scholar 

  20. Yamane S, Sugawara A, Sasaki Y, Akiyoshi K (2009) Bull Chem Soc Jpn 82:416

    Article  CAS  Google Scholar 

  21. Welzel T, Meyer-Zaika W, Epple M (2004) Chem Commun 10:1204

    Article  Google Scholar 

  22. Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Magn Reson Med 49:646

    Article  CAS  Google Scholar 

  23. Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen TN, Mørk PC, Stenstad P, Hornes E, Olsvik Ø (1992) Prog Polym Sci 17:87

    Article  CAS  Google Scholar 

  24. Nakayama H, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) Biotechnol Bioeng 84:96

    Article  CAS  Google Scholar 

  25. Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (1993) Int J Hyperthermia 9:51

    Article  CAS  Google Scholar 

  26. Ito A, Fujioka M, Yoshida T, Wakamatsu K, Ito S, Yamashita T, Jimbow K, Honda H (2007) Cancer Sci 98:424

    Article  CAS  Google Scholar 

  27. Thünemann AF, Schütt D, Kaufner L, Pison U, Möhwald H (2006) Langmuir 22:2351

    Article  Google Scholar 

  28. Du L, Chen J, Qi Y, Li D, Yuan C, Lin MC, Yew DT, Kung HF, Yu JC, Lai L (2007) Int J Nanomedicine 2:805

    Article  CAS  Google Scholar 

  29. Wang L, Sun J (2008) J Mater Chem 18:4042

    Article  CAS  Google Scholar 

  30. Tsai ZT, Wang JF, Kuo HY, Shen CR, Wang JJ, Yen TC (2010) J Magn Magn Mater 322:208

    Article  CAS  Google Scholar 

  31. Lee PW, Hsu SH, Wang JJ, Tsai JS, Lin KJ, Wey SP, Chen FR, Lai CH, Ye TC, Sung HW (2010) Biomaterials 31:1316

    Article  CAS  Google Scholar 

  32. Bakandritsos A, Mattheolabakis G, Zboril R, Bouropoulos N, Tucek J, Fatourose DG, Avgoustakis K (2010) Nanoscale 2:564

    Article  CAS  Google Scholar 

  33. Dousma J, den Ottelander D, de Bruyn PL (1979) J Inorg Nucl Chem 41:1565

    Article  CAS  Google Scholar 

  34. Wsiter-Levy L, Quemeneur F (1966) Bull Soc Chim Fr 6:1947

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (no. 20107011 and no. 23107510) in the Innovative Area “Fusion Materials” (Area No. 2206) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyofumi Katagiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katagiri, K., Ohta, K., Koumoto, K. et al. Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels. Colloid Polym Sci 291, 1375–1380 (2013). https://doi.org/10.1007/s00396-012-2868-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2868-7

Keywords

Navigation