Skip to main content
Log in

Synthesis of micron-sized polymeric particles in soap-free emulsion polymerization using oil-soluble initiators and electrolytes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Soap-free emulsion polymerization of styrene using oil-soluble initiators and electrolytes was investigated to synthesize micron-sized polystyrene particles. It was clear that an oil-soluble initiator, such as AIBN, worked like a water-soluble initiator in soap-free emulsion polymerization of styrene to prepare monodispersed particles with negative charges, probably because of the polarization of the electron-attractive functional groups decomposed from the initiators and the pi electron cloud of benzene in a styrene monomer. The addition of an electrolyte enabled secondary particles to effectively promote hetero-coagulation for particle growth by reduction of an electrical double layer and prevention of self-growth. Changing the concentration and type of electrolyte enabled us to control the size up to 12 μm in soap-free emulsion polymerization of styrene using AIBN. Conventionally, organic solvents and surfactants have been used to prepare micron-sized polymeric particles, but this method enabled the synthesis of micron-sized polymeric particles in water using electrolytes without surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Svec F, Frechet JMJ (1996) Science 273:205

    Article  CAS  Google Scholar 

  2. Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen TN, Mork PC et al (1992) Prog Polym Sci 17:87

    Article  CAS  Google Scholar 

  3. Kawaguchi H (2000) Prog Polym Sci 25:1171

    Article  CAS  Google Scholar 

  4. Tseng CM, Lu YY, Elaasser MS, Vanderhoff JW (1986) J Polym Sci Pol Chem 24:2995

    Article  CAS  Google Scholar 

  5. Lok KP, Ober CK (1985) Can J Chem 63:209

    Article  CAS  Google Scholar 

  6. Goodall AR, Wilkinson MC, Hearn J (1977) J Polym Sci Pol Chem 15:2193

    Article  CAS  Google Scholar 

  7. Gu SC, Inukai S, Konno M (2002) J Chem Eng Jpn 35:977

    Article  CAS  Google Scholar 

  8. Gu S, Akama H, Nagao D, Kobayashi Y, Konno M (2004) Langmuir 20:7948

    Article  CAS  Google Scholar 

  9. Yamada Y, Sakamoto T, Gu S, Konno M (2005) J Colloid Interface Sci 281:249

    Article  CAS  Google Scholar 

  10. Yamamoto T, Kanda Y, Higashitani K (2004) Langmuir 20:4400

    Article  CAS  Google Scholar 

  11. Yamamoto T, Nakayama M, Kanda Y, Higashitani K (2006) J Colloid Interface Sci 297:112

    Article  CAS  Google Scholar 

  12. Yamamoto T, Kanda Y, Higashitani K (2006) J Colloid Interface Sci 299:493

    Article  CAS  Google Scholar 

  13. Yamamoto T, Kanda Y, Higashitani K (2006) J Chem Eng Jpn 39:596

    Article  CAS  Google Scholar 

  14. Yoshida E (2010) Colloid Polym Sci 288:341

    Article  CAS  Google Scholar 

  15. Yoshida E (2010) Colloid Polym Sci 288:901

    Article  CAS  Google Scholar 

  16. Qiu J, Gaynor SG, Matyjaszewski K (1999) Macromolecules 32:2872

    Article  CAS  Google Scholar 

  17. Anon., Product Bulletin V-50,. Wako Chemicals, USA. 1985.

  18. Talaterben M, Bywater S (1955) J Am Chem Soci 77:3712

    Article  Google Scholar 

  19. Overberger CG, Oshaughnessy MT, Shalit H (1949) J Am Chem Soc 71:2661

    Article  Google Scholar 

  20. Verwey EJW, Overbeek JTG. Theory of the stability of lyophobic colloids. Dover Publications, Mineola, USA. 1948.

  21. Nakabayashi H, Yamada A, Noba M, Kobayashi Y, Konno M, Nagao D (2010) Langmuir 26:7512

    Article  CAS  Google Scholar 

  22. Yamamoto T, Fukushima T, Kanda Y, Higashitani K (2005) J Colloid Interface Sci 292:392

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported in part by Grants-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 23760721). FE- SEM in cryogenics and instrumental analysis Division Natural Science Center for Basic Research and Development (N-BARD) Hiroshima University was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T. Synthesis of micron-sized polymeric particles in soap-free emulsion polymerization using oil-soluble initiators and electrolytes. Colloid Polym Sci 290, 1023–1031 (2012). https://doi.org/10.1007/s00396-012-2618-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2618-x

Keywords

Navigation