Skip to main content
Log in

Responsive P(NIPAM-co-NtBAM) microgels: Flory–Rehner description of the swelling behaviour

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the present work, a systematic series of poly(N-isopropylacrylamide)(NIPAM) –poly(N-tert-butylacrylamide) (NtBAM) copolymer microgels is prepared by surfactant-free emulsion polymerisation using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. The thermoresponsive behaviour of these colloids was studied in detail applying different scattering techniques. The swelling curves obtained on the basis of photon correlation spectroscopy (PCS) are analysed using the theoretical model of Flory and Rehner. The PCS measurements reveal the narrow particle size distribution of the poly(NIPAM-co-NtBAM) microgels and a decreasing hydrodynamic radius as well as a decreasing volume phase transition temperature (VPTT) with increasing comonomer content. The description of the swelling ratio α as a function of temperature by the Flory–Rehner theory for uncharged homopolymer gels was only partially satisfying and fails for higher comonomer contents. In addition, small angle neutron scattering (SANS) is used to study the internal network structure of these microgels, and the polymer network is characterised in terms of the correlation length ξ. Above the transition temperature, only interfacial scattering from the totally collapsed particles in water can be observed. Due to a certain surface roughness of the copolymer microgels, the SANS profiles beyond the VPTT were fitted using a modified Porod law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bradley M, Vincent B, Burnett G (2009) Uptake and release of surfactants from polyampholyte microgel particles. Colloid Polym Sci 287:345–350

    Article  CAS  Google Scholar 

  2. Dusek K (1993) Responsive gels: volume transitions I. In: Advances in polymer science, 1st edn., vol 109. Springer, Berlin

    Google Scholar 

  3. Dusek K (1993) Responsive gels: volume transitions II. In: Advances in polymer science, 1st edn., vol 110. Springer, Berlin

    Google Scholar 

  4. Hoshino Y, Urakami T, Kodama T, Koide H, Oku N, Okahata Y, Shea KJ (2009) Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small 5:1562–1568

    Article  CAS  Google Scholar 

  5. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218

    Article  CAS  Google Scholar 

  6. Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92(2):1365

    Article  CAS  Google Scholar 

  7. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240

    Article  CAS  Google Scholar 

  8. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains Macromolecules 31:6099

    Article  Google Scholar 

  9. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  CAS  Google Scholar 

  10. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  11. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications, Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  12. Karg M, Hellweg T (2009) New smart poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450

    Article  CAS  Google Scholar 

  13. Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8715

    Article  CAS  Google Scholar 

  14. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  15. Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24(12):6300–6306

    Article  CAS  Google Scholar 

  16. Kratz K, Hellweg Th, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A 170(2–3):137–149

    Article  CAS  Google Scholar 

  17. Kim J-H, Ballauff M (1999) The volume transition in thermosensitive core–shell latex particles containing charged groups. Colloid Polym Sci 277:1210–1214

    Article  CAS  Google Scholar 

  18. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92(24):5013–5016

    Article  CAS  Google Scholar 

  19. Schmmidt S, Motschmann H, Hellweg T, von Klitzing R (2008) Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels. A combined AFM and ellipsometry study, Polymer 49:749–756

    Article  Google Scholar 

  20. Meng Z, Smith MH Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels, Colloid Polym Sci 287:277–285

    Article  CAS  Google Scholar 

  21. Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of smart microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254

    Article  Google Scholar 

  22. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550

    Article  CAS  Google Scholar 

  23. Saunders BR, Crowther HM, Vincent B (1997) Poly((methyl methacrylate)-co-(methacrylic acid)) microgel particles: swelling control using pH, cononsolvency, and osmotic deswelling. Macromolecules 30:482–487

    Article  CAS  Google Scholar 

  24. Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–137

    Article  CAS  Google Scholar 

  25. Duracher D, Elaissari A, Pichot C (1999) Characterization of cross-linked poly(N-isopropylmethacrylamide) microgel latexes. Colloid Polym Sci 277:905-913

    Article  CAS  Google Scholar 

  26. Berndt I, Richtering W (2003) Doubly temperature sensitive core–shell microgels. Macromolecules 36:8780–8785

    Article  CAS  Google Scholar 

  27. Uchiyama S, Matsumura Y, Prasanna de Silva A, Iwai K (2004) Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers. Anal Chem 76:1793–1798

    Article  CAS  Google Scholar 

  28. Berndt I, Pedersen JS, Richtering W (2006) Temperature-sensitive core–shell microgel particles with dense shell. Angew Chem 118:1769–1773

    Article  Google Scholar 

  29. Tanaka T, Sato E, Hirakawo Y, Hirotsu S, Peetermans J (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458

    Article  CAS  Google Scholar 

  30. Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9)6829–6841

    Article  CAS  Google Scholar 

  31. Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30

    Article  CAS  Google Scholar 

  32. Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66(5):051803/1–10

    Article  Google Scholar 

  33. Flory PJ (1953) Principles or polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  34. Flory PJ (1970) Thermodynamics of polymer solutions. Discuss. Faraday Soc. 49:7–29

    Article  Google Scholar 

  35. Crassous JJ, Wittemann A, Siebenbürger M, Schrinner M, Drechsler M, Ballauff M (2008) Direct imaging of temperature-sensitive core–shell latexes by cryogenic transmission electron microscopy. Colloid Polym Sci 286:805–812

    Article  CAS  Google Scholar 

  36. Cook JP, Riley DJ (2009) The effect of perchlorate ions on a pyridine-based microgel. Adv Colloid Interface Sci 147:67–73

    Article  Google Scholar 

  37. Yi YD, Bae YC (1998) Volume-phase transition of submicron-sized N-isopropylacrylamide N-tert-butylacrylamide particles by photon correlation spectroscopy. J Appl Polym Sci 67:2087–2092

    Article  CAS  Google Scholar 

  38. Debord JD, Lyon LA (2003) Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir 19:7662–7664

    Article  CAS  Google Scholar 

  39. Shibayama M, Tanaka T, Han CC (1992) Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels. J Chem Phys 97(9):6842–6854

    Article  CAS  Google Scholar 

  40. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  41. Higgins JS, Benoit HC (1996) Polymers and neutron scattering, 2nd edn. Clarendon, Oxford

    Google Scholar 

  42. Chu B (1974) Laser light scattering. Academic, New York

    Google Scholar 

  43. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57(11):4814–4820

    Article  CAS  Google Scholar 

  44. Bargeron CB (1974) Measurement of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants. J Chem Phys 61(5):2134–2138

    Article  CAS  Google Scholar 

  45. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–217

    Article  Google Scholar 

  46. Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  47. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J Chem Phys 11(11):512–520

    Article  CAS  Google Scholar 

  48. Eichinger BE, Flory PJ (1968) Thermodynamics of polymer solutions. Trans Faraday Soc 64;2035–2052

    Article  CAS  Google Scholar 

  49. Hirotsu S (1994) Static and time-dependent properties of polymer gels around the volume phase transition. Phase Transit 47:183–240

    Article  CAS  Google Scholar 

  50. Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume-phase transitions of ionized N-isopropylacrylamide gels. J Chem Phys 87(2):1392–1395

    Article  CAS  Google Scholar 

  51. Geisler E, Horkay F, Hecht A-M (1993) Scattering from network polydispersity in polymer gels. Phys Rev Lett 71(4)645–648

    Article  Google Scholar 

  52. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  53. Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly(NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surf A Physicochem Eng Asp 152:327–333

    Article  CAS  Google Scholar 

  54. Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulfate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901

    Article  CAS  Google Scholar 

  55. Kratz K, Hellweg Th, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6531–6539

    Article  Google Scholar 

  56. Wignall GD, Bates FS (1987) Absolute calibration of small-angle neutron scattering data. J Appl Crystallogr 20:28–40

    Article  CAS  Google Scholar 

  57. Russell TP, Lin JS, Spooner S, Wignall GD (1988) Intercalibration of small-angle X-ray and neutron scattering data. J Appl Crystallogr 21:629–638

    Article  CAS  Google Scholar 

  58. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci 278:972–978

    Article  CAS  Google Scholar 

  59. Sierra-Martín B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernández-Barbero A (2005) Microscopic signature of a microgel volume phase transition. Macromolecules 38:10782–10787

    Article  Google Scholar 

  60. Zhang Q-S, Zha L-S, Ma J-H, Liang B-R (2007) Synthesis and characterization of novel, temperature-sensitive microgels based on N-isopropylacrylamide and tert-butyl acrylate. J Appl Polym Sci 103:2962–2967

    Article  CAS  Google Scholar 

  61. Wu J, Huang G, Hu Z (2003) Interparticle potential and the phase behavoir of temperature-sensitive microgel dispersions. Macromolecules 36:440–448

    Article  CAS  Google Scholar 

  62. Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids. Phys Rev Lett 90(4):048304

    Article  Google Scholar 

  63. Hino T, Prausnitz JM (1996) Swelling equilibria for heterogeneous polyacrylamide gels. J Appl Polym Sci 62:1635–1640

    Article  CAS  Google Scholar 

  64. Senff H, Richtering W (2000) Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840

    Article  CAS  Google Scholar 

  65. Erman B, Flory PJ (1986) Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules 19:2342–2353

    Article  CAS  Google Scholar 

  66. Kratz K, Hellweg Th, Eimer W (1998) Effect of connectivity and charge density on the swelling and local structural properties of colloidal PNIPAM microgels. Ber Bunsenges Phys Chem 102:1603–1608

    CAS  Google Scholar 

  67. Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, Villigen

  68. Wong P (1985) Scattering by inhomogeneous systems with rough internal surfaces: porous solids and random-field Ising systems. Phys Rev B 32(11):7417–7424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the DFG within the framework of the priority program SPP 1259 “Intelligente Hydrogele”. The JCNS outstation at the FRM II is acknowledged for providing SANS beamtime. We are grateful to Markus Drechsler for the help with the cryo-TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hellweg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertle, Y., Zeiser, M., Hasenöhrl, C. et al. Responsive P(NIPAM-co-NtBAM) microgels: Flory–Rehner description of the swelling behaviour. Colloid Polym Sci 288, 1047–1059 (2010). https://doi.org/10.1007/s00396-010-2232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2232-8

Keywords

Navigation