Skip to main content
Log in

Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Phase change material microcapsules were prepared by complex coacervation of silk fibroin (SF) and chitosan (CHI). n-Eicosane was used as the core material. The effects of SF/CHI ratio, and percentage of cross-linking agent and n-Eicosane content on the properties of microcapsules were studied. The size distribution and the surface morphology of microcapsules were characterized by optical and scanning electron microscopy. The encapsulation of core material was determined by energy dispersive spectrometer analysis. The results indicated that SF/CHI microcapsules were prepared successfully. Microcapsules had smooth outer surface when the ratio of SF to CHI was close to 5. On the other hand, at high SF/CHI ratios (≥14), microcapsules showed a two-layer structure, an inner compact layer, and an outer, more porous, sponge-like layer. The highest microencapsulation efficiency was obtained at a SF/CHI ratio of 20 in the presence of 0.9% cross-linking agent and of 1.5% n-Eicosane content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thies C (1996) A survey of microencapsulation process. In: Benita S (ed) Microencapsulation: methods and industrial applications. Marcel Dekker Inc., New York, USA, p 1

    Google Scholar 

  2. Dombrow M (1992) Introduction and overview. In: Dombrow M (ed) Micro-capsules and nanoparticles in medicine and pharmacy. CRC, Boca Raton, p 3

    Google Scholar 

  3. Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  4. Nelson G (2001) Microencapsulation in textile finishing. Rev Prog Color Relat Top 31:57–64

    CAS  Google Scholar 

  5. Shukla PG (2006) Microencapsulation of liquid active agents. In: Ghosh SK (ed) Functional coatings by polymer microencapsulation. WILEY, Weinheim, pp 166–169

    Google Scholar 

  6. Kas HS, Oner L (2000) Microencapsulation using coacervation/phase separation. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker Inc, New York, p 306

    Google Scholar 

  7. Peter M (1995) Applications and environmental aspects of chitin and chitosan. J Macromol Sci Pure Appl Chem A32:629–640

    CAS  Google Scholar 

  8. Hudson SM, Smith C (1998) Polysaccharides: chitin and chitosan: chemistry and technology of their use as structural materials. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 96–118

    Google Scholar 

  9. Felse PA, Panda T (1999) Studies on applications of chitin and its derivatives. Bioprocess Eng 20:505–512

    Article  CAS  Google Scholar 

  10. Paul W, Sharma CP (2000) Chitosan, a drug carrier for the 21st century: a review. STP Pharmaceut Sci 10:5–22

    CAS  Google Scholar 

  11. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  CAS  Google Scholar 

  12. Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects-an update. Pharm Pharmacol 53:1047–1067

    CAS  Google Scholar 

  13. Dutta PK, Ravikumar MNV, Dutta J (2002) Chitin and chitosan for versatile applications. J Macromol Sci C42:307–354

    CAS  Google Scholar 

  14. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosan. Food Sci Technol 10:37–51

    CAS  Google Scholar 

  15. Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  Google Scholar 

  16. Sakabe H, Ito H, Miyamoto T, Noishiki Y, Ha WS (1989) In vivo blood compatibility of regenerated silk fibroin. Sen-i Gakkaishi 45:487–490

    CAS  Google Scholar 

  17. Park WH, Ha WS, Ito H, Miyamoto T, Inagaki H, Noishiki Y (2001) Relationships between antithrombogenicity and surface free energy of regenerated silk fibroin films. Fiber Polym 2:58–63

    Article  CAS  Google Scholar 

  18. Santin M, Motta A, Freddi G, Cannas M (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46:382–389

    Article  CAS  Google Scholar 

  19. Sandford P (1992) High purity chitosan and alginate: preparation, analysis and applications. In: Chandrasekaran R (ed) Frontiers in carbohydrate research-2. Elsevier, London, pp 250–269

    Google Scholar 

  20. Malay O, Bayraktar O, Batıgun A (2007) Complex coacervation of silk fibroin and hyaluronic acid. International Journal of Biological Micromolecules 40:387–393

    Article  CAS  Google Scholar 

  21. Malay O, Yalcin D, Batigun A, Bayraktar O (2008) Characterization of silk fibroin/hyaluronic acid polyelectrolyte complex (PEC) films. J Therm Anal Calorim 94:749–755

    Article  CAS  Google Scholar 

  22. Chen X, Li W, Yu T (1997) Conformation transition of silk fibroin induced by blending chitosan. J Polym Sci Polym Phys Ed 35:2293–2296

    Article  CAS  Google Scholar 

  23. Gobin AS, Froude VE, Mathur AB (2005) Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J Biomed Mater Res 74A:465–473

    Article  CAS  Google Scholar 

  24. Kim DK, Kim HS (2005) Structure and characteristic of chitosan Bombyx mori silk fibroin blend films. Polymer-Korea 29:408–412

    CAS  Google Scholar 

  25. Chen X, Li WJ, Zhong W, Lu YH, Yu TY (1997) pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. J Appl Polym Sci 65:2257–2262

    Article  CAS  Google Scholar 

  26. Shim H, McCullough EA (2001) Using phase change materials in clothing. Tex Res J 71:495–502

    CAS  Google Scholar 

  27. Zuckerman ZL, Pushaw YJ, Perry BT, Wyner DM (2001) Fabric coating composition containing energy absorbing phase change material. United States patent number US6207738

  28. Sarier N, Onder E (2007) The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim Acta 452:149–160

    Article  CAS  Google Scholar 

  29. Onder E, Sarier N, Cimen E (2007) Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim Acta 467:63–72

    Article  CAS  Google Scholar 

  30. Thakare AM, Sangwan A, Yadav S (2005) Providing comfort through phase change materials. Man Made Textiles in India 48:239–242

    CAS  Google Scholar 

  31. Zhang XX (2001) Heat-storage and thermo-regulated textiles and clothing. In: Tao XM (ed) Smart fibres, fabrics and clothing. CRC, Boca Raton, Florida, pp 34–57

    Google Scholar 

  32. Ying B, Kwok YL, Li Y, Yeung CY, Song QW (2004) Thermal regulating functional performance of PCM garments. Int J Cloth Sci Technol 16:84–96

    Article  Google Scholar 

  33. Bendkowska W, Tysiak J, Grabowski L, Blejzyk A (2005) Determining temperature regulating factor for apparel fabrics containing phase change material. Int J Cloth Sci Technol 17:209–214

    Article  Google Scholar 

  34. Ying B, Kwok YL, Li Y, Zhu QY, Yeung CY (2004) Assessing the performance of textiles incorporating phase change materials. Polym Test 23:541–549

    Article  CAS  Google Scholar 

  35. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550

    Article  CAS  Google Scholar 

  36. Parys MV (2006) Smart textiles using microencapsulation technology. In: Ghosh SK (ed) Functional coatings by polymer microencapsulation. WILEY-VCH, Weinheim, pp 235–242

    Google Scholar 

  37. Genovese A, Amarasinghe G, Glewis M, Mainwaring D, Shanks RA (2006) Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material. Thermochim Acta 443:235–244

    Article  CAS  Google Scholar 

  38. Tseng YH, Fang MH, Tsai PS, Yang YM (2005) Preparation of Microencapsulated Phase-Change Materials (MCPCMs) by means of interfacial polycondensation. J Microencapsul 22:37–46

    Article  CAS  Google Scholar 

  39. Sohns J, Seifert B, Hahne E (1981) The effect of impurities on the melting temperature and the heat of fusion of latent heat storage materials. Int J Thermophys 2:71–87

    Article  CAS  Google Scholar 

  40. Colvin DP, Bryant YG (1998) Protective clothing containing encapsulated phase change materials. Adv Heat Mass Transf Biotechnol 40:123–132

    Google Scholar 

  41. Pause B (2003) Nonwoven protective garments with thermo-regulating properties. J Ind Text 33:93–99

    Article  CAS  Google Scholar 

  42. Shin Y, Yoo D, Son K (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules. J Appl Polym Sci 97:910–915

    Article  CAS  Google Scholar 

  43. Sashina ES, Bochek AM, Novoselov NP, Kirichenko DA (2006) Structure and solubility of natural silk fibroin. Russ J Appl Chem 79(6):869–876

    Article  CAS  Google Scholar 

  44. Espinosa-Andrews H, Baez-Gonzalez JG, Cruz-Sosa F, Vernon-Carter EJ (2007) Gum Arabic-chitosan complex coacervation. Biomacromolecules 8:1313–1318

    Article  CAS  Google Scholar 

  45. Zhang H, Wang X (2009) Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids Surf. A: Physicochem. Eng. Aspects 332:129–138

    Article  CAS  Google Scholar 

  46. Mayya KS, Bhattacharyya A, Argillier JF (2003) Micro-encapsulation by complex coacervation: influence of surfactant. Polym Int 52:644–647

    Article  CAS  Google Scholar 

  47. Ma GH, Su ZG, Omi S, Sundberg D, Stubb J (2003) Microencapsulation of oil with poly(styrene-N, N-dimethylaminoethyl methacrylate) by SPG emulsification technique: effects of conversion and compositon of oil phase. J Colloid Interface Sci 266:282–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial support provided by Ege University Research Foundation (project number 08-MUH-042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guldemet Basal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deveci, S.S., Basal, G. Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan. Colloid Polym Sci 287, 1455–1467 (2009). https://doi.org/10.1007/s00396-009-2115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2115-z

Keywords

Navigation