Skip to main content

Advertisement

Log in

Layer-by-layer self-assembly preparation of layered double hydroxide/polyelectrolyte nanofilms monitored by surface plasmon resonance spectroscopy

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Layer-by-layer self-assembly was used to prepare nanofilms of (2:1) MgAl-layered double hydroxide (LDH) nanoparticles and polyacrylic acid or sodium polystyrene sulfonate. The multilayers were attached to ~50-nm thick gold films on microscopy glass slides prepared by vacuum evaporation. The contact between the gold film and the multilayered films was mediated via surface modification with thiols, adsorption of poly(diallyl dimethyl ammonium) chloride (PDDA) or direct binding of the LDH particles. Surface plasmon resonance (SPR) spectra of the multilayered films were analyzed by fitting the Fresnel equations. The shifts in the SPR angle (ΔΘSPR) due to the adsorption/deposition on the gold surface were used to evaluate the process of building up the multilayers. Strong surface/multilayer contact formed when electrostatic attraction and hydrophobic interaction were combined as in the case of mercaptopropanoic acid or PDDA sticking layers. The LDH suspension concentration strongly influenced the number of deposited layers. The multilayer films were investigated by reflection FT-IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Goltner C, Colfen H, Antonietti M (1999) Chem Unserer Z 33:200

    Article  Google Scholar 

  2. Putlitz BZ, Landfester K, Fischer H, Antonietti M (2001) Adv Mater 13:500

    Google Scholar 

  3. Granick S, Kumar SK, Amis EJ, Antonietti M, Balazs AC, Chakraborty AK, Grest GS, Hawker C, Janmey P, Kramer EJ, Nuzzo R, Russell TP, Safinya CR (2003) J Polym Sci Polym Phys 41:2755

    Article  Google Scholar 

  4. Shchukin DG, Sukhorukov GB, Möhwald H (2003) Chem Mater 15:3947

    Article  Google Scholar 

  5. Faul CFJ, Antonietti M (2003) Adv Mater 15:673

    Article  Google Scholar 

  6. Fendler J (1997) Curr Opin Solid State Mater Sci 2:365

    Article  Google Scholar 

  7. Hammond PT (2000) Curr Opin Colloid Interface Sci 4:430

    Article  Google Scholar 

  8. Iler RK (1966) J Colloid Interface Sci 21:569

    Google Scholar 

  9. Kotov NA, Dékány I, Fendler JH (1995) J Phys Chem 99:13063

    Google Scholar 

  10. Kotov NA, Dékány I, Fendler JH (1996) Adv Mater 8:637

    Article  Google Scholar 

  11. Kovtyukhova N, Ollivier PJ, Chizhik S, Dubravin A, Buzaneva E, Gorchinskiy A, Marchenko A, Smirnova N (1999) Thin Solid Films 337:166

    Article  Google Scholar 

  12. Zhou Y, Li Z, Hu N, Zeng Y, Rusling JF (2002) Langmuir 18:8573

    Article  Google Scholar 

  13. Ai H, Meng H, Ichinose I, Jones SA, Mills DK, Lvov YM, Kiao X (2003) J Neurosci Methods 128:1

    Google Scholar 

  14. Li Z, Hu N (2003) J Electroanal Chem 558:155

    Article  Google Scholar 

  15. Lvov Y, Decher G, Möhvald H (1993) Langmuir 9:481

    Google Scholar 

  16. Decher G (1997) Science 227:1232

    Article  Google Scholar 

  17. Dékány I, Haraszti T (1996) Colloid Surf A 391:123–124

    Google Scholar 

  18. Haraszti T, Túri L, Dékány I, Fendler J (1997) ACH Models Chem 134:785

    Google Scholar 

  19. Hutter E, Fendler JH, Roy D (2001) J Phys Chem B 105:11159

    Article  Google Scholar 

  20. Li Z, Hu N (2003) J Electroanal Chem 558:155

    Article  Google Scholar 

  21. Dékány I, Berger F, Imrik K, Lagaly G (1997) Colloid Polym Sci 275:681

    Article  Google Scholar 

  22. Riechle WT (1985) J Catal 94:547

    Article  Google Scholar 

  23. Tombácz E, Filipcsei G, Szekeres M, Gingl Z (1999) Colloid Surf A 151:233

    Article  Google Scholar 

  24. Tombácz E, Szekeres M (2001) Langmuir17:1411

    Article  Google Scholar 

  25. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berling Heidelberg New York

    Google Scholar 

  26. Miller CE, Meyer WH, Knoll W, Wegner G (1992) Ber Bunsenges Phys Chem 96:869

    Google Scholar 

  27. James RO, Parks GA (1982) In: Matijevic E (ed) Surface and colloid science, vol 12. Plenum, New York

  28. Tombácz E, Szekeres M, Kertész I, Turi L (1995) Prog Colloid Polym Sci 98:160

    Google Scholar 

  29. Holloway CH, Byrd H, Advincula RC, Knoll W (2000) Polym Preprints 41:613

    Google Scholar 

  30. Advincula R, Aust E, Meyer W, Knoll W (1996) Langmuir 12:3536

    Article  Google Scholar 

  31. Kotov NA (1999) Nanostruct Mater 12:789

    Article  Google Scholar 

  32. Pelmenschikov AG, Morosi G, Gamba A, Zecchina A, Bordiga S, Paukshitis EA (1993) J Phys Chem 97:11979

    Google Scholar 

  33. del Arco M, Martin C, Martin I, Rives V, Trujillano R (1993) Spectrochim Acta A 49:1575

    Article  Google Scholar 

  34. Yang QZ, Sun DJ, Zhang CG, Wang XJ, Zhao WA (2003) Langmuir 19:5570

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Hungarian National Scientific Research Fund OTKA (project numbers: M 045609 and F 042715) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dékány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekeres, M., Széchenyi, A., Stépán, K. et al. Layer-by-layer self-assembly preparation of layered double hydroxide/polyelectrolyte nanofilms monitored by surface plasmon resonance spectroscopy. Colloid Polym Sci 283, 937–945 (2005). https://doi.org/10.1007/s00396-004-1250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1250-9

Keywords