Skip to main content

Advertisement

Log in

The roles of intracellular proteolysis in cardiac ischemia–reperfusion injury

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ischemic heart disease remains a leading cause of human mortality worldwide. One form of ischemic heart disease is ischemia–reperfusion injury caused by the reintroduction of blood supply to ischemic cardiac muscle. The short and long-term damage that occurs due to ischemia–reperfusion injury is partly due to the proteolysis of diverse protein substrates inside and outside of cardiomyocytes. Ischemia–reperfusion activates several diverse intracellular proteases, including, but not limited to, matrix metalloproteinases, calpains, cathepsins, and caspases. This review will focus on the biological roles, intracellular localization, proteolytic targets, and inhibitors of these proteases in cardiomyocytes following ischemia–reperfusion injury. Recognition of the intracellular function of each of these proteases includes defining their activation, proteolytic targets, and their inhibitors during myocardial ischemia–reperfusion injury. This review is a step toward a better understanding of protease activation and involvement in ischemic heart disease and developing new therapeutic strategies for its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abrahmsén L, Tom J, Burnier J, Butcher KA, Kossiakoff A, Wells JA (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30:4151–4159. https://doi.org/10.1021/bi00231a007

    Article  PubMed  Google Scholar 

  2. Adams-Cioaba MA, Krupa JC, Xu C, Mort JS, min J, (2011) Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2:197. https://doi.org/10.1038/ncomms1204

    Article  CAS  PubMed  Google Scholar 

  3. Agard NJ, Mahrus S, Trinidad JC, Lynn A, Burlingame AL, Wells JA (2012) Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc Natl Acad Sci USA 109:1913–1918. https://doi.org/10.1073/pnas.1117158109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039–2047. https://doi.org/10.1161/circulationaha.109.930222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali MA, Stepanko A, Fan X, Holt A, Schulz R (2012) Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 423:1–5. https://doi.org/10.1016/j.bbrc.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  6. Arama E, Baena-Lopez LA, Fearnhead HO (2021) Non-lethal message from the Holy Land: the first international conference on nonapoptotic roles of apoptotic proteins. FEBS J 288:2166–2183. https://doi.org/10.1111/febs.15547

    Article  CAS  PubMed  Google Scholar 

  7. Araya LE, Soni IV, Hardy JA, Julien O (2021) Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem Biol 16:2280–2296. https://doi.org/10.1021/acschembio.1c00456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashizawa K, Wishart GJ, Katayama S, Takano D, Maeda M, Arakawa E, Tsuzuki Y (2006) Effects of calpain and Rho-kinase inhibitors on the acrosome reaction and motility of fowl spermatozoa in vitro. Reproduction 131:71–79. https://doi.org/10.1530/rep.1.00588

    Article  CAS  PubMed  Google Scholar 

  9. Baghirova S, Hughes BG, Poirier M, Kondo MY, Schulz R (2016) Nuclear matrix metalloproteinase-2 in the cardiomyocyte and the ischemic-reperfused heart. J Mol Cell Cardiol 94:153–161. https://doi.org/10.1016/j.yjmcc.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D (2006) Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281:22943–22952. https://doi.org/10.1074/jbc.M601025200

    Article  CAS  PubMed  Google Scholar 

  11. Bando Y, Kominami E, Katunuma N (1986) Purification and tissue distribution of rat cathepsin L. Biochem J 100:35–42. https://doi.org/10.1093/oxfordjournals.jbchem.a121703

    Article  CAS  Google Scholar 

  12. Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G (2019) The phosphoinositide kinase pikfyve promotes cathepsin-S-mediated major histocompatibility complex class II antigen presentation. iScience. 11:160–177. https://doi.org/10.1016/j.isci.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  13. Barefield DY, McNamara JW, Lynch TL, Kuster DWD, Govindan S, Haar L, Wang Y, Taylor EN, Lorenz JN, Nieman ML, Zhu G, Luther PK, Varró A, Dobrev D, Ai X, Janssen PML, Kass DA, Jones WK, Gilbert RJ, Sadayappan S (2019) Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. J Mol Cell Cardiol 129:236–246. https://doi.org/10.1016/j.yjmcc.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H, and cathepsin L. Meth enzymol 80:535–561. https://doi.org/10.1016/s0076-6879(81)80043-2

    Article  CAS  Google Scholar 

  15. Barta J, Tóth A, Edes I, Vaszily M, Papp JG, Varró A, Papp Z (2005) Calpain-1-sensitive myofibrillar proteins of the human myocardium. Mol Cell Biochem 278:1–8. https://doi.org/10.1007/s11010-005-1370-7

    Article  CAS  PubMed  Google Scholar 

  16. Bassiouni W, Ali MAM, Schulz R (2021) Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 288:7162–7182. https://doi.org/10.1111/febs.15701

    Article  CAS  PubMed  Google Scholar 

  17. Bauer EA, Stricklin GP, Jeffrey JJ, Eisen AZ (1975) Collagenase production by human skin fibroblasts. Biochem Biophys Res Commun 64:232–240. https://doi.org/10.1016/0006-291x(75)90243-0

    Article  CAS  PubMed  Google Scholar 

  18. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD (1995) Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci 4:1966–1976. https://doi.org/10.1002/pro.5560041002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beers C, Burich A, Kleijmeer MJ, Griffith JM, Wong P, Rudensky AY (2005) Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. J Immunol 174:1205–1212. https://doi.org/10.4049/jimmunol.174.3.1205

    Article  CAS  PubMed  Google Scholar 

  20. Bergman MR, Teerlink JR, Mahimkar R, Li L, Zhu BQ, Nguyen A, Dahi S, Karliner JS, Lovett DH (2007) Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 292:H1847–H1860. https://doi.org/10.1152/ajpheart.00434.2006

    Article  CAS  PubMed  Google Scholar 

  21. Bertin J, Mendrysa SM, LaCount DJ, Gaur S, Krebs JF, Armstrong RC, Tomaselli KJ, Friesen PD (1996) Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J Virol 70:6251–6259. https://doi.org/10.1128/JVI.70.9.6251-6259.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biniossek ML, Nägler DK, Becker-Pauly C, Schilling O (2011) Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 10:5363–5373. https://doi.org/10.1021/pr200621z

    Article  CAS  PubMed  Google Scholar 

  23. Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson DW, Rodger IW (1998) Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. J Mol Cell Biol 30:733–742. https://doi.org/10.1006/jmcc.1998.0660

    Article  CAS  Google Scholar 

  24. Bode W, Gomis-Rüth FX, Stöckler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins.’ FEBS Lett 331:134–140. https://doi.org/10.1016/0014-5793(93)80312-i

    Article  CAS  PubMed  Google Scholar 

  25. Bolli R, Marbán E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634. https://doi.org/10.1152/physrev.1999.79.2.609

    Article  CAS  PubMed  Google Scholar 

  26. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451. https://doi.org/10.1038/onc.2008.310

    Article  CAS  PubMed  Google Scholar 

  27. Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D (2023) Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol 118:18. https://doi.org/10.1007/s00395-023-00987-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283. https://doi.org/10.1016/s0167-4838(99)00279-4

    Article  CAS  PubMed  Google Scholar 

  29. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brömme D, Lecaille F (2009) Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 18:585–600. https://doi.org/10.1517/13543780902832661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282:273–278. https://doi.org/10.1042/bj2820273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burston JJ, Xu L, Grabowska U, Tunblad K, Lindström E, Chapman V (2016) The Cathepsin K inhibitor L-006235 has analgesic and disease modifying properties in the MIA model of osteoarthritis. Osteoarthr Cartil 24:454. https://doi.org/10.1016/j.joca.2016.01.828

    Article  Google Scholar 

  33. Büth H, Luigi Buttigieg P, Ostafe R, Rehders M, Dannenmann SR, Schaschke N, Stark HJ, Boukamp P, Brix K (2007) Cathepsin B is essential for regeneration of scratch-wounded normal human epidermal keratinocytes. Eur J Cell Biol 86:747–761. https://doi.org/10.1016/j.ejcb.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  34. Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14:73–78. https://doi.org/10.1038/sj.cdd.4402034

    Article  CAS  PubMed  Google Scholar 

  35. Cardona M, López JA, Serafín A, Rongvaux A, Inserte J, García-Dorado D, Flavell R, Llovera M, Cañas X, Vázquez J, Sanchis D (2015) Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS ONE 10:e0131411. https://doi.org/10.1371/journal.pone.0131411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carragher NO, Westhoff MA, Riley D, Potter DA, Dutt P, Elce JS, Greer PA, Frame MC (2002) v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol 22:257–269. https://doi.org/10.1128/MCB.22.1.257-269.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castro MM, Fuah J, Ali M, Sung M, Schulz J, Kondo MY, Fan X, Holt A, Schulz R (2013) Inhibitory effects of caspase inhibitors on the activity of matrix metalloproteinase-2. Biochem Pharmacol 86:469–475. https://doi.org/10.1016/j.bcp.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  38. Catalano JG, Deaton DN, Furfine ES, Hassell AM, McFadyen RB, Miller AB, Miller LR, Shewchuk LM, Willard DH, Wright LL (2004) Exploration of the P1 SAR of aldehyde cathepsin K inhibitors. Bioorg Med Chem Lett 14:275–278. https://doi.org/10.1016/j.bmcl.2003.09.088

    Article  CAS  PubMed  Google Scholar 

  39. Cawston TE, Galloway WA, Mercer E, Murphy G, Reynolds JJ (1981) Purification of rabbit bone inhibitor of collagenase. Biochem J 195:159–165. https://doi.org/10.1042/bj1950159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cerisano G, Buonamici P, Valenti R, Sciagrà R, Raspanti S, Santini A, Carrabba N, Dovellini EV, Romito R, Pupi A, Colonna P, Antoniucci D (2014) Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J 35:184–191. https://doi.org/10.1093/eurheartj/eht420

    Article  CAS  PubMed  Google Scholar 

  41. Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Lee TYT, Mahmud Z, Schulz R (2019) Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia–reperfusion injury. Basic Res Cardiol 114:42. https://doi.org/10.1007/s00395-019-0749-7

    Article  PubMed  Google Scholar 

  42. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I (2004) Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 43:295–301. https://doi.org/10.1016/j.jacc.2003.09.026

    Article  CAS  PubMed  Google Scholar 

  43. Chen H, Wang J, Xiang MX, Lin Y, He A, Jin CN, Guan J, Sukhova GK, Libby P, Wang JA, Shi GP (2013) Cathepsin S-mediated fibroblast trans-differentiation contributes to left ventricular remodelling after myocardial infarction. Cardiovasc Res 100:84–94. https://doi.org/10.1093/cvr/cvt158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen M, Won DJ, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277:29181–29186. https://doi.org/10.1074/jbc.M204951200

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Lesnefsky EJ (2015) Heart mitochondria and calpain 1: location, function, and targets. Biochim Biophys Acta 1852:2372–2378. https://doi.org/10.1016/j.bbadis.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  46. Chen Q, Paillard M, Gomez L, Ross T, Hu Y, Xu A, Lesnefsky EJ (2011) Activation of mitochondrial μ-calpain increases AIF cleavage in cardiac mitochondria during ischemia-reperfusion. Biochem Biophys Res Commun 415:533–538. https://doi.org/10.1016/j.bbrc.2011.10.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng XW, Huang Z, Kuzuya M, Okumura K, Murohara T (2011) Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications. Hypertension 58:978–986. https://doi.org/10.1161/hypertensionaha.111.180935

    Article  CAS  PubMed  Google Scholar 

  48. Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839. https://doi.org/10.1161/01.cir.101.15.1833

    Article  CAS  PubMed  Google Scholar 

  49. Choi YH, Lee SJ, Nguyen P, Jang JS, Lee J, Wu ML, Takano E, Maki M, Henkart PA, Trepel JB (1997) Regulation of cyclin D1 by calpain protease. J Biol Chem 272:28479–28484. https://doi.org/10.1074/jbc.272.45.28479

    Article  CAS  PubMed  Google Scholar 

  50. Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. B J Pharmacol 152:189–205. https://doi.org/10.1038/sj.bjp.0707344

    Article  CAS  Google Scholar 

  51. Citarella A, Micale N (2020) Peptidyl fluoromethyl ketones and their applications in medicinal chemistry. Molecules 25:4031. https://doi.org/10.3390/molecules25174031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256. https://doi.org/10.1073/pnas.092022999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dana D, Pathak SK (2020) A review of small molecule inhibitors and functional probes of human cathepsin l. Molecules 25:698. https://doi.org/10.3390/molecules25030698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davies KJ (2016) The oxygen paradox, oxidative stress, and ageing. Arch Biochem Biophys 595:28–32. https://doi.org/10.1016/j.abb.2015.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dayton WR, Schollmeyer JV (1981) Immunocytochemical localization of a calcium-activated protease in skeletal muscle cells. Exp Cell Res 136:423–433. https://doi.org/10.1016/0014-4827(81)90022-7

    Article  CAS  PubMed  Google Scholar 

  56. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567. https://doi.org/10.1038/sj.onc.1207107

    Article  CAS  PubMed  Google Scholar 

  57. Deveraux QL, Stennicke HR, Salvesen GS, Reed JC (1999) Endogenous inhibitors of caspases. J Clin Immunol 19:388–398. https://doi.org/10.1023/a:1020502800208

    Article  CAS  PubMed  Google Scholar 

  58. Dhani S, Zhao Y, Zhivotovsky B (2021) A long way to go: caspase inhibitors in clinical use. Cell Death Dis 12:949. https://doi.org/10.1038/s41419-021-04240-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P (2008) Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 32:540–553. https://doi.org/10.1016/j.molcel.2008.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donnini S, Monti M, Roncone R, Morbidelli L, Rocchigiani M, Oliviero S, Casella L, Giachetti A, Schulz R, Ziche M (2008) Peroxynitrite inactivates human-tissue inhibitor of metalloproteinase-4. FEBS Lett 582:1135–1140. https://doi.org/10.1016/j.febslet.2008.02.080

    Article  CAS  PubMed  Google Scholar 

  61. Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283:19140–19150. https://doi.org/10.1074/jbc.M802513200

    Article  CAS  PubMed  Google Scholar 

  62. Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294. https://doi.org/10.1016/j.cell.2008.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ebisui C, Tsujinaka T, Kido Y, Iijima S, Yano M, Shibata H, Tanaka T, Mori T (1994) Role of intracellular proteases in differentiation of L6 myoblast cells. Biochem Mol Biol Int 32:515–521

    CAS  PubMed  Google Scholar 

  64. Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH, Dufour A, Goebeler V, Kappelhoff R, Keller UAD, Klein T, Lange PF, Marino G, Morrison CJ, Prudova A, Rodriguez D, Starr AE, Wang Y, Overall CM (2016) Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol 49:37–60. https://doi.org/10.1016/j.matbio.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  65. Eddins MJ, Lemongello D, Friesen PD, Fisher AJ (2002) Crystallization and low-resolution structure of an effector-caspase/P35 complex: similarities and differences to an initiator-caspase/P35 complex. Acta Crystallogr D Biol Crystallogr 58:299–302. https://doi.org/10.1107/s0907444901018753

    Article  PubMed  Google Scholar 

  66. Falgueyret JP, Desmarais S, Oballa R, Black WC, Cromlish W, Khougaz K, Lamontagne S, Massé F, Riendeau D, Toulmond S, Percival MD (2005) Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem 48:7535–7543. https://doi.org/10.1021/jm0504961

    Article  CAS  PubMed  Google Scholar 

  67. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15. https://doi.org/10.1186/1755-1536-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956. https://doi.org/10.1161/01.res.79.5.949

    Article  CAS  PubMed  Google Scholar 

  69. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838. https://doi.org/10.1242/jcs.02562

    Article  CAS  PubMed  Google Scholar 

  70. Frangogiannis NG, Kovacic JC (2020) Extracellular matrix in ischemic heart disease, part 4/4: JACC focus seminar. J Am Coll Health 75:2219–2235. https://doi.org/10.1016/j.jacc.2020.03.020

    Article  Google Scholar 

  71. Frears ER, Zhang Z, Blake DR, O’Connell JP, Winyard PG (1996) Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett 381:21–24. https://doi.org/10.1016/0014-5793(96)00065-8

    Article  CAS  PubMed  Google Scholar 

  72. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, Powers SK (2006) Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol 290:H128–H136. https://doi.org/10.1152/ajpheart.00739.2005

    Article  CAS  PubMed  Google Scholar 

  73. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232. https://doi.org/10.1042/BJ20041142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Futai E, Kubo T, Sorimachi H, Suzuki K, Maeda T (2001) Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta 1517:316–319. https://doi.org/10.1016/s0167-4781(00)00256-6

    Article  CAS  PubMed  Google Scholar 

  75. Galloway WA, Murphy G, Sandy JD, Gavrilovic J, Cawston TE, Reynolds JJ (1983) Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem J 209:741–752. https://doi.org/10.1042/bj2090741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y, Dorn GW (2007) Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 100:1071–1078. https://doi.org/10.1161/01.RES.0000261938.28365.11

    Article  CAS  PubMed  Google Scholar 

  77. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E (1997) Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80:393–399. https://doi.org/10.1161/01.res.0000435855.49359.47

    Article  CAS  PubMed  Google Scholar 

  78. Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180. https://doi.org/10.1093/cvr/cvs116

    Article  CAS  PubMed  Google Scholar 

  79. García RA, Pantazatos DP, Gessner CR, Go KV, Woods VL, Villarreal FJ (2005) Molecular interactions between matrilysin and the matrix metalloproteinase inhibitor doxycycline investigated by deuterium exchange mass spectrometry. Mol Pharmacol 67:1128–1136. https://doi.org/10.1124/mol.104.006346

    Article  CAS  PubMed  Google Scholar 

  80. Gevaert K, Van Damme J, Goethals M, Thomas GR, Hoorelbeke B, Demol H, Martens L, Puype M, Staes A, Vandekerckhove J (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia coli proteins. Mol Cell Proteomics 1:896–903. https://doi.org/10.1074/mcp.m200061-mcp200

    Article  CAS  PubMed  Google Scholar 

  81. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228. https://doi.org/10.1126/science.277.5323.225

    Article  CAS  PubMed  Google Scholar 

  82. Gilchrist JS, Cook T, Abrenica B, Rashidkhani B, Pierce GN (2010) Extensive autolytic fragmentation of membranous versus cytosolic calpain following myocardial ischemia-reperfusion. Can J Physiol Pharmacol 88:584–594. https://doi.org/10.1139/y10-031

    Article  CAS  PubMed  Google Scholar 

  83. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801. https://doi.org/10.1152/physrev.00029.2002

    Article  CAS  PubMed  Google Scholar 

  84. Golub LM, Goodson JM, Lee HM, Vidal AM, McNamara TF, Ramamurthy NS (1985) Tetracyclines inhibit tissue collagenases: effects of ingested low-dose and local delivery systems. J Periodontol 56:93–97. https://doi.org/10.1902/jop.1985.56.11s.93

    Article  CAS  PubMed  Google Scholar 

  85. Golub LM, Lee HM, Lehrer G, Nemiroff A, McNamara TF, Kaplan R, Ramamurthy NS (1983) Minocycline reduces gingival collagenolytic activity during diabetes: preliminary observations and a proposed new mechanism of action. J Periodontol Res 18:516–526. https://doi.org/10.1111/j.1600-0765.1983.tb00388.x

    Article  CAS  Google Scholar 

  86. Goulet B, Baruch A, Moon N-S, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219. https://doi.org/10.1016/s1097-2765(04)00209-6

    Article  CAS  PubMed  Google Scholar 

  87. Gracie JA, Robertson SE, McInnes IB (2003) Interleukin-18. J Leukoc Biol 73:213–224. https://doi.org/10.1189/jlb.0602313

    Article  CAS  PubMed  Google Scholar 

  88. Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 271:30375–30380. https://doi.org/10.1074/jbc.271.48.30375

    Article  CAS  PubMed  Google Scholar 

  89. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 307(Pt 1):93–98. https://doi.org/10.1042/bj3070093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022. https://doi.org/10.1073/pnas.48.6.1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guncar G, Klemencic I, Turk B, Turk V, Karaoglanovic-Carmona A, Juliano L, Turk D (2000) Crystal structure of cathepsin X: a flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Structure 8:305–313. https://doi.org/10.1016/s0969-2126(00)00108-8

    Article  CAS  PubMed  Google Scholar 

  92. Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D (1998) Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 6:51–61. https://doi.org/10.1016/s0969-2126(98)00007-0

    Article  CAS  PubMed  Google Scholar 

  93. Guo A, Hall D, Zhang C, Peng T, Miller JD, Kutschke W, Grueter CE, Johnson FL, Lin RZ, Song LS (2015) Molecular determinants of calpain-dependent cleavage of junctophilin-2 protein in cardiomyocytes. J Biol Chem 290:17946–17955. https://doi.org/10.1074/jbc.M115.652396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, Hall D, Wu J, Shi Y, Zhu Q, Chen C, Thiel WH, Zhan X, Weiss RM, Zhan F, Musselman CA, Pufall M, Zhu W, Au KF, Hong J, Anderson ME, Grueter CE, Song LS (2018) E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362:eaan3303. https://doi.org/10.1126/science.aan3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hanna RA, Campbell RL, Davies PL (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456:409–412. https://doi.org/10.1038/nature07451

    Article  CAS  PubMed  Google Scholar 

  96. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100. https://doi.org/10.1172/JCI62874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. He W, McCarroll CS, Nather K, Ford K, Mangion K, Riddell A, O’Toole D, Zaeri A, Corcoran D, Carrick D, Lee MMY, McEntegart M, Davie A, Good R, Lindsay MM, Eteiba H, Rocchiccioli P, Watkins S, Hood S, Shaukat A, McArthur L, Elliott EB, McClure J, Hawksby C, Martin T, Petrie MC, Oldroyd KG, Smith GL, Oxford AMIOS, Channon KM, Berry C, Nicklin SA, Loughrey CM (2021) Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size. Cardiovasc Res 118:1535–1547. https://doi.org/10.1093/cvr/cvab204

    Article  CAS  PubMed Central  Google Scholar 

  98. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  99. Heusch G (2021) Myocardial stunning and hibernation revisited. Nat Rev Cardiol 18:522–536. https://doi.org/10.1038/s41569-021-00506-7

    Article  PubMed  Google Scholar 

  100. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M (1998) Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 187:587–600. https://doi.org/10.1084/jem.187.4.587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoffmeyer MR, Jones SP, Ross CR, Sharp B, Grisham MB, Laroux FS, Stalker TJ, Scalia R, Lefer DJ (2000) Myocardial ischemia/reperfusion injury in NADPH oxidase-deficient mice. Circ Res 87:812–817. https://doi.org/10.1161/01.res.87.9.812

    Article  CAS  PubMed  Google Scholar 

  102. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715. https://doi.org/10.1006/jmcc.1999.1006

    Article  CAS  PubMed  Google Scholar 

  103. Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112:1–13. https://doi.org/10.1007/s00395-017-0652-z

    Article  CAS  Google Scholar 

  104. Hosfield CM, Elce JS, Davies PL, Jia Z (1999) Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J 18:6880–6889. https://doi.org/10.1093/emboj/18.24.6880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498. https://doi.org/10.1038/nrd2308

    Article  CAS  PubMed  Google Scholar 

  106. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362. https://doi.org/10.1016/s1471-4914(01)02049-4

    Article  CAS  PubMed  Google Scholar 

  107. Hughes BG, Schulz R (2014) Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 109(4):424. https://doi.org/10.1007/s00395-014-0424-y

    Article  CAS  PubMed  Google Scholar 

  108. Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF (1997) Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272:32719–32722. https://doi.org/10.1074/jbc.272.52.32719

    Article  CAS  PubMed  Google Scholar 

  109. Imajoh S, Kawasaki H, Suzuki K (1986) Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. Biochem J 100:633–642. https://doi.org/10.1093/oxfordjournals.jbchem.a121755

    Article  CAS  Google Scholar 

  110. Inomata M, Kasai Y, Nakamura M, Kawashima S (1988) Activation mechanism of calcium-activated neutral protease. Evidence for the existence of intramolecular and intermolecular autolyses. J Biol Chem 263:19783–19787. https://doi.org/10.1016/S0021-9258(19)77703-5

    Article  CAS  PubMed  Google Scholar 

  111. Inserte J, Cardona M, Poncelas-Nozal M, Hernando V, Vilardosa Ú, Aluja D, Parra VM, Sanchis D, Garcia-Dorado D (2016) Studies on the role of apoptosis after transient myocardial ischemia: genetic deletion of the executioner caspases-3 and -7 does not limit infarct size and ventricular remodeling. Basic Res Cardiol 111:18. https://doi.org/10.1007/s00395-016-0537-6

    Article  CAS  PubMed  Google Scholar 

  112. Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473. https://doi.org/10.1161/01.RES.0000181170.87738.f3

    Article  CAS  PubMed  Google Scholar 

  113. Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217:624–631. https://doi.org/10.1006/bbrc.1995.2820

    Article  CAS  PubMed  Google Scholar 

  114. Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N, Aoki T, Seiki M (2001) Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J 20:4782–4793. https://doi.org/10.1093/emboj/20.17.4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C, Qiu J, Rong X, Shi Z, Xiao J, Shi Y, Chu M (2019) Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol 67:311–318. https://doi.org/10.1016/j.intimp.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  116. Joshi A, Bondada V, Geddes JW (2009) Mitochondrial μ-calpain is not involved in the processing of apoptosis-inducing factor. Exp Neurol 218:221–227. https://doi.org/10.1016/j.expneurol.2009.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaiser WJ, Vucic D, Miller LK (1998) The drosophila inhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Lett 440:243–248. https://doi.org/10.1016/s0014-5793(98)01465-3

    Article  CAS  PubMed  Google Scholar 

  118. Kajita M, Kinoh H, Ito N, Takamura A, Itoh Y, Okada A, Sato H, Seiki M (1999) Human membrane type-4 matrix metalloproteinase (MT4-MMP) is encoded by a novel major transcript: isolation of complementary DNA clones for human and mouse mt4-mmp transcripts. FEBS Lett 457:353–356. https://doi.org/10.1016/s0014-5793(99)01065-0

    Article  CAS  PubMed  Google Scholar 

  119. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423. https://doi.org/10.1093/cvr/cvp268

    Article  CAS  PubMed  Google Scholar 

  120. Kang MY, Zhang Y, Matkovich SJ, Diwan A, Chishti AH, Dorn GW (2010) Receptor-independent cardiac protein kinase Calpha activation by calpain-mediated truncation of regulatory domains. Circ Res 107:903–912. https://doi.org/10.1161/CIRCRESAHA.110.220772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Katrukha IA, Kogan AE, Vylegzhanina AV, Kharitonov AV, Tamm NN, Filatov VL, Bereznikova AV, Koshkina EV, Katrukha AG (2018) Full-size cardiac troponin I and its proteolytic fragments in blood of patients with acute myocardial infarction: antibody selection for assay development. Clin Chem 64:1104–1112. https://doi.org/10.1373/clinchem.2017.286211105

    Article  CAS  PubMed  Google Scholar 

  122. Kawashima S, Hayashi M, Saito Y, Kasai Y, Imahori K (1988) Tissue distribution of calcium-activated neutral proteinases in rat. Biochim Biophys Acta 965:130–135. https://doi.org/10.1016/0304-4165(88)90048-7

    Article  CAS  PubMed  Google Scholar 

  123. Kennett SB, Roberts JD, Olden K (2004) Requirement of protein kinase C micro activation and calpain-mediated proteolysis for arachidonic acid-stimulated adhesion of MDA-MB-435 human mammary carcinoma cells to collagen type IV. J Biol Chem 279:3300–3307. https://doi.org/10.1074/jbc.M305734200

    Article  CAS  PubMed  Google Scholar 

  124. Kim GT, Chun YS, Park JW, Kim MS (2003) Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 309:619–624. https://doi.org/10.1016/j.bbrc.2003.08.045

    Article  CAS  PubMed  Google Scholar 

  125. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, KainthanRK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM, (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28:281–288. https://doi.org/10.1038/nbt.1611

    Article  CAS  PubMed  Google Scholar 

  126. Kleifeld O, Doucet A, Prudova A, Gioia M, Kizhakkedathu JN, Overall CM (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat protocols 6:1578–1611. https://doi.org/10.1038/nprot.2011.382

    Article  CAS  PubMed  Google Scholar 

  127. Kobayashi H, Moniwa N, Sugimura M, Shinohara H, Ohi H, Terao T (1993) Effects of membrane-associated cathepsin B on the activation of receptor-bound prourokinase and subsequent invasion of reconstituted basement membranes. Biochim Biophys Acta 1178:55–62. https://doi.org/10.1016/0167-4889(93)90109-3

    Article  CAS  PubMed  Google Scholar 

  128. Koga H, Mori N, Yamada H, Nishimura Y, Tokuda K, Kato K, Imoto T (1992) Endo- and aminopeptidase activities of rat cathepsin H. Chem Pharm Bull 40:965–970. https://doi.org/10.1248/cpb.40.965

    Article  CAS  Google Scholar 

  129. Kominami E, Tsukahara T, Bando Y, Katunuma N (1985) Distribution of cathepsins B and H in rat tissues and peripheral blood cells. Biochem J 98:87–93. https://doi.org/10.1093/oxfordjournals.jbchem.a135277

    Article  CAS  Google Scholar 

  130. Kumamoto T, Kleese WC, Cong JY, Goll DE, Pierce PR, Allen RE (1992) Localization of the Ca(2+)-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. Anat Rec 232:60–77. https://doi.org/10.1002/ar.1092320108

    Article  CAS  PubMed  Google Scholar 

  131. Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18:690–692. https://doi.org/10.1096/fj.02-1202fje

    Article  CAS  PubMed  Google Scholar 

  132. Lahiri SK, Quick AP, Samson-Couterie B, Hulsurkar M, Elzenaar I, van Oort RJ, Wehrens XHT (2020) Nuclear localization of a novel calpain-2 mediated junctophilin-2 C-terminal cleavage peptide promotes cardiomyocyte remodeling. Basic Res Cardiol 115:49. https://doi.org/10.1007/s00395-020-0807-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lamkanfi M, Moreira LO, Makena P, Spierings DC, Boyd K, Murray PJ, Green DR, Kanneganti TD (2009) Caspase-7 deficiency protects from endotoxin-induced lymphocyte apoptosis and improves survival. Blood 113:2742–2745. https://doi.org/10.1182/blood-2008-09-178038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lane RD, Mellgren RL, Mericle MT (1985) Subcellular localization of bovine heart calcium-dependent protease inhibitor. J Mol Cell Cardiol 17:863–872. https://doi.org/10.1016/s0022-2828(85)80100-0

    Article  CAS  PubMed  Google Scholar 

  135. Lecaille F, Choe Y, Brandt W, Li Z, Craik CS, Brömme D (2002) Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry 41:8447–8454. https://doi.org/10.1021/bi025638x

    Article  CAS  PubMed  Google Scholar 

  136. Lee HJ, Tomioka S, Kinbara K, Masumoto H, Jeong SY, Sorimachi H, Ishiura S, Suzuki K (1999) Characterization of a human digestive tract-specific calpain, nCL-4, expressed in the baculovirus system. Arch Biochem Biophys 362:22–31. https://doi.org/10.1006/abbi.1998.1021

    Article  CAS  PubMed  Google Scholar 

  137. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN (2003) Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284:456–463. https://doi.org/10.1152/ajpheart.00777.2002133

    Article  Google Scholar 

  138. Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, Trollinger DR, Herman B, Cascio WE (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. Myocardial ischemia: mechanisms, reperfusion, protection. Experiantia Supplementum 76:99–114. https://doi.org/10.1007/978-3-0348-8988-9_7

    Article  CAS  Google Scholar 

  139. Li L, Thompson J, Hu Y, Lesnefsky EJ, Willard B, Chen Q (2022) Calpain-mediated protein targets in cardiac mitochondria following ischemia-reperfusion. Sci Rep 12:138. https://doi.org/10.1038/s41598-021-03947-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li Y, Liang P, Jiang B, Tang Y, Liu X, Liu M, Sun H, Chen C, Hao H, Liu Z, Xiao X (2020) CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly. Basic Res Cardiol 115:29. https://doi.org/10.1007/s00395-020-0790-6

    Article  CAS  PubMed  Google Scholar 

  141. Li Y, Liang P, Jiang B, Tang Y, Lv Q, Hao H, Liu Z, Xiao X (2019) CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. Free Radic Biol Med 141:172–181. https://doi.org/10.1016/j.freeradbiomed.2019.06.017

    Article  CAS  PubMed  Google Scholar 

  142. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372. https://doi.org/10.1161/01.cir.104.3.365

    Article  CAS  PubMed  Google Scholar 

  143. Limb GA, Matter K, Murphy G, Cambrey AD, Bishop PN, Morris GE, Khaw PT (2005) Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Clin Pathol 166:1555–1563. https://doi.org/10.1016/S0002-9440(10)62371-1

    Article  CAS  Google Scholar 

  144. Linnevers C, Smeekens SP, Brömme D (1997) Human cathepsin W, a putative cysteine protease predominantly expressed in CD8+ T-lymphocytes. FEBS Lett 405:253–259. https://doi.org/10.1016/s0014-5793(97)00118-x

    Article  CAS  PubMed  Google Scholar 

  145. Liu J, Xiong W, Baca-Regen L, Nagase H, Baxter BT (2003) Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 38:1376–1383. https://doi.org/10.1016/s0741-5214(03)01022-x

    Article  PubMed  Google Scholar 

  146. Llano E, Pendás AM, Freije JP, Nakano A, Knäuper V, Murphy G, López-Otin C (1999) Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res 59:2570–2576

    CAS  PubMed  Google Scholar 

  147. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437. https://doi.org/10.1074/jbc.R800035200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lovett DH, Mahimkar R, Raffai RL, Cape L, Maklashina E, Cecchini G, Karliner JS (2012) A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS ONE 7:34177. https://doi.org/10.1371/journal.pone.0034177

    Article  CAS  Google Scholar 

  149. Lovett DH, Mahimkar R, Raffai RL, Cape L, Zhu BQ, Jin ZQ, Baker AJ, Karliner JS (2013) N-terminal truncated intracellular matrix metalloproteinase-2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure. PLoS ONE 8:68154. https://doi.org/10.1371/journal.pone.0068154

    Article  CAS  Google Scholar 

  150. Luo SY, Araya LE, Julien O (2019) Protease substrate identification using N-terminomics. ACS Chem Biol 14:2361–2371. https://doi.org/10.1021/acschembio.9b00398

    Article  CAS  PubMed  Google Scholar 

  151. Luo Y, Sellitti DF, Suzuki K (2016) The calpain proteolytic system. Encyclopedia of Cell Biol. Elsevier 670–680 doi:https://doi.org/10.1016/B978-0-12-394447-4.10075-6

  152. Ma H, Fukiage C, Kim YH, Duncan MK, Reed NA, Shih M, Azuma M, Shearer TR (2001) Characterization and expression of calpain 10. A novel ubiquitous calpain with nuclear localization. J Biol Chem 276:28525–28531. https://doi.org/10.1074/jbc.M100603200

    Article  CAS  PubMed  Google Scholar 

  153. Maekawa A, Lee JK, Nagaya T, Kamiya K, Yasui K, Horiba M, Miwa K, Uzzaman M, Maki M, Ueda Y, Kodama I (2003) Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J Mol Cell Cardiol 35:1277–1284. https://doi.org/10.1016/s0022-2828(03)00238-4

    Article  CAS  PubMed  Google Scholar 

  154. Mahmud Z, Zahran S, Liu PB, Reiz B, Chan BYH, Roczkowsky A, McCartney CE, Davies PL, Li L, Schulz R, Hwang PM (2019) Structure and proteolytic susceptibility of the inhibitory C-terminal tail of cardiac troponin I. Biochim Biophys Acta Gen Subj 1863:661–671. https://doi.org/10.1016/j.bbagen.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  155. Mai J, Sameni M, Mikkelsen T, Sloane BF (2002) Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. Biol Chem 383:1407–1413. https://doi.org/10.1515/BC.2002.159

    Article  CAS  PubMed  Google Scholar 

  156. Martin EL, Moyer BZ, Pape MC, Starcher B, Leco KJ, Veldhuizen RA (2003) Negative impact of tissue inhibitor of metalloproteinase-3 null mutation on lung structure and function in response to sepsis. Am J Physiol Lung Cell Mol Physiol 285:1222–1232. https://doi.org/10.1152/ajplung.00141.2003

    Article  Google Scholar 

  157. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  158. Matsumura Y, Saeki E, Inoue M, Hori M, Kamada T, Kusuoka H (1996) Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res 79:447–454. https://doi.org/10.1161/01.res.79.3.447

    Article  CAS  PubMed  Google Scholar 

  159. McCarthy CP, Raber I, Chapman AR, Sandoval Y, Apple FS, Mills NL, Januzzi JL (2019) Myocardial injury in the era of high-sensitivity cardiac troponin assays: a practical approach for clinicians. JAMA Cardiol 4:1034–1042. https://doi.org/10.1001/jamacardio.2019.2724

    Article  PubMed  Google Scholar 

  160. McGrath ME, Palmer JT, Brömme D, Somoza JR (1998) Crystal structure of human cathepsin S. Protein Sci 7:1294–1302. https://doi.org/10.1002/pro.5560070604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Merkle S, Frantz S, Schön MP, Bauersachs J, Buitrago M, Frost RJ, Schmitteckert EM, Lohse MJ, Engelhardt S (2007) A role for caspase-1 in heart failure. Circ Res 100:645–653. https://doi.org/10.1161/01.RES.0000260203.55077.61

    Article  CAS  PubMed  Google Scholar 

  162. Méthot N, Huang J, Coulombe N, Vaillancourt JP, Rasper D, Tam J, Han Y, Colucci J, Zamboni R, Xanthoudakis S, Toulmond S, Nicholson DW, Roy S (2004) Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J Exp Med 199:199–207. https://doi.org/10.1084/jem.20031791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660. https://doi.org/10.1016/0092-8674(93)90486-a

    Article  CAS  PubMed  Google Scholar 

  164. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL (2002) A Ca2+ switch aligns the active site of calpain. Cell 108:649–660. https://doi.org/10.1016/s0092-8674(02)00659-1

    Article  CAS  PubMed  Google Scholar 

  165. Montaser M, Lalmanach G, Mach L (2002) CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within living cells. Biol Chem 383:1305–1308. https://doi.org/10.1515/BC.2002.147

    Article  CAS  PubMed  Google Scholar 

  166. Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C, Wieckowski MR, Pinton P (2017) Mechanistic role of mPTP in ischemia-reperfusion Injury. Adv Exp Med Biol 982:169–189. https://doi.org/10.1007/978-3-319-55330-6_9

    Article  CAS  PubMed  Google Scholar 

  167. Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284:1667–1670. https://doi.org/10.1126/science.284.5420.1667

    Article  CAS  PubMed  Google Scholar 

  168. Müller AL, Hryshko LV, Dhalla NS (2013) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 164:39–47. https://doi.org/10.1016/j.ijcard.2012.01.103

    Article  PubMed  Google Scholar 

  169. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12:233. https://doi.org/10.1186/gb-2011-12-11-233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. https://doi.org/10.1161/01.cir.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  171. Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10:2321–2330. https://doi.org/10.1002/j.1460-2075.1991.tb07771.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nagai Y, Lapiere CM, Gross J (1966) Tadpole collagenase. Preparation and purification. Biochemistry 5:3123–3130. https://doi.org/10.1021/bi00874a007

    Article  CAS  PubMed  Google Scholar 

  173. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573. https://doi.org/10.1016/j.cardiores.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  174. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. https://doi.org/10.1074/jbc.274.31.21491

    Article  CAS  PubMed  Google Scholar 

  175. Nah J, Zablocki D, Sadoshima J (2021) The roles of the inhibitory autophagy regulator Rubicon in the heart: A new therapeutic target to prevent cardiac cell death. Exp Mol Med 53:528–536. https://doi.org/10.1038/s12276-021-00600-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nakagawa K, Masumoto H, Sorimachi H, Suzuki K (2001) Dissociation of m-calpain subunits occurs after autolysis of the N-terminus of the catalytic subunit, and is not required for activation. Biochem J 130:605–611. https://doi.org/10.1093/oxfordjournals.jbchem.a003025

    Article  CAS  Google Scholar 

  177. Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C, Rudensky AY (1998) Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280:450–453. https://doi.org/10.1126/science.280.5362.450

    Article  CAS  PubMed  Google Scholar 

  178. Neitzel JJ (2010) Enzyme catalysis: the serine proteases. Nat Educ 3:21

    Google Scholar 

  179. Neuhof C, Neuhof H (2014) Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 6:638–652. https://doi.org/10.4330/wjc.v6.i7.638172

    Article  PubMed  PubMed Central  Google Scholar 

  180. Nishimura Y, Kawabata T, Kato K (1988) Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys 261:64–71. https://doi.org/10.1016/0003-9861(88)90104-x

    Article  CAS  PubMed  Google Scholar 

  181. Nissler K, Kreusch S, Rommerskirch W, Strubel W, Weber E, Wiederanders B (1998) Sorting of non-glycosylated human procathepsin S in mammalian cells. Biol Chem 379:219–224. https://doi.org/10.1515/bchm.1998.379.2.219

    Article  CAS  PubMed  Google Scholar 

  182. Novinec M, Grass RN, Stark WJ, Turk V, Baici A, Lenarcic B (2007) Interaction between human cathepsins K, L, and S and elastins: mechanism of elastinolysis and inhibition by macromolecular inhibitors. J Biol Chem 282:7893–7902. https://doi.org/10.1074/jbc.M610107200

    Article  CAS  PubMed  Google Scholar 

  183. Oda A, Druker BJ, Ariyoshi H, Smith M, Salzman EW (1993) pp60src is an endogenous substrate for calpain in human blood platelets. J Biol Chem 268:12603–12608. https://doi.org/10.1016/S0021-9258(18)31431-5

    Article  CAS  PubMed  Google Scholar 

  184. Okamoto T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H (1997) Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys 342:261–274. https://doi.org/10.1006/abbi.1997.0127

    Article  CAS  PubMed  Google Scholar 

  185. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596–29602. https://doi.org/10.1074/jbc.M102417200

    Article  CAS  PubMed  Google Scholar 

  186. Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34. https://doi.org/10.1016/j.yjmcc.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  187. Ono Y, Shimada H, Sorimachi H, Richard I, Saido TC, Beckmann JS, Ishiura S, Suzuki K (1998) Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem 273:17073–17078. https://doi.org/10.1074/jbc.273.27.17073

    Article  CAS  PubMed  Google Scholar 

  188. Overall CM (2004) Dilating the degradome: matrix metalloproteinase 2 (MMP-2) cuts to the heart of the matter. Biochem J 383:5–7. https://doi.org/10.1042/bj20041433

    Article  Google Scholar 

  189. Palecek SP, Huttenlocher A, Horwitz AF, Lauffenburger DA (1998) Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J Cell Sci 111:929–940. https://doi.org/10.1242/jcs.111.7.929

    Article  CAS  PubMed  Google Scholar 

  190. Pei D (1999) Leukolysin/MMP25/MT6-MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res 9:291–303. https://doi.org/10.1038/sj.cr.7290028

    Article  CAS  PubMed  Google Scholar 

  191. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244–247. https://doi.org/10.1038/375244a0

    Article  CAS  PubMed  Google Scholar 

  192. Pei D, Weiss SJ (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 271:9135–9140. https://doi.org/10.1074/jbc.271.15.9135

    Article  CAS  PubMed  Google Scholar 

  193. Peng K, Liu H, Yan B, Meng XW, Song SY, Ji FH, Xia Z (2021) Inhibition of cathepsin S attenuates myocardial ischemia/reperfusion injury by suppressing inflammation and apoptosis. J Cell Physiol 236:1309–1320. https://doi.org/10.1002/jcp.29938

    Article  CAS  PubMed  Google Scholar 

  194. Piper HM, Garcña-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300

    Article  CAS  PubMed  Google Scholar 

  195. Poncelas M, Inserte J, Aluja D, Hernando V, Vilardosa U, Garcia-Dorado D (2017) Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc Res 113:950–961. https://doi.org/10.1093/cvr/cvx073

    Article  CAS  PubMed  Google Scholar 

  196. Potz BA, Abid MR, Sellke FW (2016) Role of calpain in pathogenesis of human disease processes. J Nat Sci 2:218

    Google Scholar 

  197. Puente XS, Pendás AM, Llano E, Velasco G, López-Otín C (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 56:944–949

    CAS  PubMed  Google Scholar 

  198. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579. https://doi.org/10.1172/JCI119076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ratnikov BI, Cieplak P, Remacle AG, Nguyen E, Smith JW (2021) Quantitative profiling of protease specificity. PLoS Comput Biol 17:1008101. https://doi.org/10.1371/journal.pcbi.1008101

    Article  CAS  Google Scholar 

  200. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:624–632. https://doi.org/10.1093/nar/gkx1134

    Article  CAS  Google Scholar 

  201. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 69:597–604. https://doi.org/10.1016/0092-8674(92)90223-y

    Article  CAS  PubMed  Google Scholar 

  202. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794. https://doi.org/10.1161/01.cir.56.5.786

    Article  CAS  PubMed  Google Scholar 

  203. Repnik U, Česen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5:19140–19150. https://doi.org/10.1101/cshperspect.a008755

    Article  CAS  Google Scholar 

  204. Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33. https://doi.org/10.1016/j.bbapap.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  205. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40. https://doi.org/10.1016/0092-8674(95)90368-2

    Article  CAS  PubMed  Google Scholar 

  206. Riese RJ, Wolf PR, Brömme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA (1996) Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 4:357–366. https://doi.org/10.1016/s1074-7613(00)80249-6

    Article  CAS  PubMed  Google Scholar 

  207. Roczkowsky A, Chan BYH, Lee TYT, Mahmud Z, Hartley B, Julien O, Armanious G, Young HS, Schulz R (2020) Myocardial MMP-2 contributes to SERCA2a proteolysis during cardiac ischaemia–reperfusion injury. Cardiovasc Res 116:1021–1031. https://doi.org/10.1093/cvr/cvz207

    Article  CAS  PubMed  Google Scholar 

  208. Rossello A, Nuti E, Orlandini E, Carelli P, Rapposelli S, Macchia M, Minutolo F, Carbonaro L, Albini A, Benelli R (2004) New N-arylsulfonyl-N-alkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP-2). Bioorg Med Chem 12:2441–2450. https://doi.org/10.1016/j.bmc.2004.01.047

    Article  CAS  PubMed  Google Scholar 

  209. Rothe M, Dodt J (1992) Studies on the aminopeptidase activity of rat cathepsin H. Eur J Biochem 210:759–764. https://doi.org/10.1111/j.1432-1033.1992.tb17478.x

    Article  CAS  PubMed  Google Scholar 

  210. Rowan AD, Mason P, Mach L, Mort JS (1992) Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem 267:15993–15999. https://doi.org/10.1016/S0021-9258(19)4932-4

    Article  CAS  PubMed  Google Scholar 

  211. Rowinsky EK, Humphrey R, Hammond LA, Aylesworth C, Smetzer L, Hidalgo M, Morrow M, Smith L, Garner A, Sorensen JM, Von Hoff DD, Eckhardt SG (2000) Phase I and pharmacologic study of the specific matrix metalloproteinase inhibitor BAY 12–9566 on a protracted oral daily dosing schedule in patients with solid malignancies. J Clin Oncol 18:178–186. https://doi.org/10.1200/JCO.2000.18.1.178

    Article  CAS  PubMed  Google Scholar 

  212. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S (2001) Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 38:2063–2070. https://doi.org/10.1016/s0735-1097(01)01670-9

    Article  CAS  PubMed  Google Scholar 

  213. Sabri A, Alcott SG, Elouardighi H, Pak E, Derian C, Andrade-Gordon P, Kinnally K, Steinberg SF (2003) Neutrophil cathepsin G promotes detachment-induced cardiomyocyte apoptosis via a protease-activated receptor-independent mechanism. J Biol Chem 278:23944–23954. https://doi.org/10.1074/jbc.M302718200

    Article  CAS  PubMed  Google Scholar 

  214. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458. https://doi.org/10.1073/pnas.95.23.13453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446. https://doi.org/10.1016/s0092-8674(00)80430-4

    Article  CAS  PubMed  Google Scholar 

  216. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967. https://doi.org/10.1073/pnas.96.20.10964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Salvesen GS, Hempel A, Coll NS (2016) Protease signaling in animal and plant-regulated cell death. FEBS J 283:2577–2598. https://doi.org/10.1111/febs.13616

    Article  CAS  PubMed  Google Scholar 

  218. Sasaki T, Kikuchi T, Yumoto N, Yoshimura N, Murachi T (1984) Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem 259:12489–12494. https://doi.org/10.1016/S0021-9258(18)90773-8

    Article  CAS  PubMed  Google Scholar 

  219. Sasaki T, Kishi M, Saito M, Tanaka T, Higuchi N, Kominami E, Katunuma N, Murachi T (1990) Inhibitory effect of di- and tripeptidyl aldehydes on calpains and cathepsins. J Enzyme Inhib 3:195–201. https://doi.org/10.3109/14756369009035837

    Article  CAS  PubMed  Google Scholar 

  220. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65. https://doi.org/10.1038/370061a0

    Article  CAS  PubMed  Google Scholar 

  221. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552. https://doi.org/10.1161/CIRCULATIONAHA.104.531616

    Article  CAS  PubMed  Google Scholar 

  222. Saxena S, Jain A, Rani V (2017) MicroRNA-mediated MMP regulation: current diagnostic and therapeutic strategies for metabolic syndrome. Curr Gene Ther 17:214–227. https://doi.org/10.2174/1566523217666170707100026

    Article  CAS  PubMed  Google Scholar 

  223. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256. https://doi.org/10.1161/01.cir.104.3.253

    Article  CAS  PubMed  Google Scholar 

  224. Schechter I, Berger A (1967) On the size of the active site in proteases. I Papain Biochem Biophys Res Commun 27:157–162. https://doi.org/10.1016/s0006-291x(67)80055-x

    Article  CAS  PubMed  Google Scholar 

  225. Schulze CJ, Wang W, Suarez-Pinzon WL, Sawicka J, Sawicki G, Schulz R (2003) Imbalance between tissue inhibitor of metalloproteinase-4 and matrix metalloproteinases during acute myocardial [correction of myoctardial] ischemia-reperfusion injury. Circulation 107:2487–2492. https://doi.org/10.1161/01.CIR.0000065603.09430.58

    Article  CAS  PubMed  Google Scholar 

  226. Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14:2545–2579. https://doi.org/10.1089/ars.2010.3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Shah PP, Myers MC, Beavers MP, Purvis JE, Jing H, Grieser HJ, Sharlow ER, Napper AD, Huryn DM, Cooperman BS, Smith AB, Diamond SL (2008) Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L. Mol Pharmacol 74:34–41. https://doi.org/10.1124/mol.108.046219

    Article  CAS  PubMed  Google Scholar 

  228. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  229. Shintani-Ishida K, Yoshida K (2015) Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia-reperfusion. Int J Cardiol 197:26–32. https://doi.org/10.1016/j.ijcard.2015.06.010

    Article  PubMed  Google Scholar 

  230. Singh RB, Chohan PK, Dhalla NS, Netticadan T (2004) The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. J Mol Cell Cardiol 37:101–110. https://doi.org/10.1016/j.yjmcc.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  231. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326. https://doi.org/10.1074/jbc.M008363200

    Article  CAS  PubMed  Google Scholar 

  232. Smith GN, Mickler EA, Hasty KA, Brandt KD (1999) Specificity of inhibition of matrix metalloproteinase activity by doxycycline: relationship to structure of the enzyme. Arthritis Rheum 42:1140–1146. https://doi.org/10.1002/1529-0131(199906)42:6%3c1140::AID-ANR10%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  233. Sodhi RK, Singh M, Singh N, Jaggi AS (2009) Protective effects of caspase-9 and poly (ADP-ribose) polymerase inhibitors on ischemia-reperfusion-induced myocardial injury. Arch Pharm Res 32:1037–1043. https://doi.org/10.1007/s12272-009-1709-9

    Article  CAS  PubMed  Google Scholar 

  234. Sorimachi H, Suzuki K (2001) The structure of calpain. Biochem J 129:653–664. https://doi.org/10.1093/oxfordjournals.jbchem.a002903

    Article  CAS  Google Scholar 

  235. Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K (1989) Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m-and μ-types: specific expression of the mRNA in skeletal muscle. J Bio Chem 264:20106–20111

    Article  CAS  Google Scholar 

  236. Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: eastern cooperative oncology group trial E2196. J Clin Oncol 22:4683–4690. https://doi.org/10.1200/JCO.2004.08.054

    Article  CAS  PubMed  Google Scholar 

  237. Spaulding K, Takaba K, Collins A, Faraji F, Wang G, Aguayo E, Ge L, Saloner D, Wallace AW, Baker AJ, Lovett DH, Ratcliffe MB (2018) Short term doxycycline treatment induces sustained improvement in myocardial infarction border zone contractility. PLoS ONE 13:0192720. https://doi.org/10.1371/journal.pone.0192720

    Article  CAS  Google Scholar 

  238. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342. https://doi.org/10.1152/physrev.00012.2007

    Article  CAS  PubMed  Google Scholar 

  239. Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Günther T, Schüle R, Peters C, Reinheckel T (2007) Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 282:37045–37052. https://doi.org/10.1074/jbc.M703447200

    Article  CAS  PubMed  Google Scholar 

  240. Squìer MK, Miller AC, Malkinson AM, Cohen JJ (1994) Calpain activation in apoptosis. J Cell Physiol 159:229–237. https://doi.org/10.1002/jcp.1041590206

    Article  PubMed  Google Scholar 

  241. Stabach PR, Cianci CD, Glantz SB, Zhang Z, Morrow JS (1997) Site-directed mutagenesis of αII spectrin at codon 1175 modulates its μ-calpain susceptibility. Biochemistry 36:57–65. https://doi.org/10.1021/bi962034i

    Article  CAS  PubMed  Google Scholar 

  242. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. https://doi.org/10.1146/annurev.biochem.69.1.217

    Article  CAS  PubMed  Google Scholar 

  243. Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W (2000) The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci USA 97:588–592. https://doi.org/10.1073/pnas.97.2.588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338. https://doi.org/10.1074/jbc.270.10.5331

    Article  CAS  PubMed  Google Scholar 

  245. Stypmann J, Gläser K, Roth W, Tobin DJ, Petermann I, Matthias R, Mönnig G, Haverkamp W, Breithardt G, Schmahl W, Peters C, Reinheckel T (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 99:6234–6239. https://doi.org/10.1073/pnas.092637699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP (2013) Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2:000191 doi:https://doi.org/10.1161/JAHA.113.000191

  247. Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-López NL, Schulz R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429–436. https://doi.org/10.1016/j.yjmcc.2007.07.055

    Article  CAS  PubMed  Google Scholar 

  248. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341. https://doi.org/10.1084/jem.184.4.1331

    Article  CAS  PubMed  Google Scholar 

  249. Suzuki K (1991) Nomenclature of calcium dependent proteinase. Biomed Biochim Acta 50:483–484

    CAS  PubMed  Google Scholar 

  250. Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53:12–18. https://doi.org/10.2337/diabetes.53.2007.s12

    Article  Google Scholar 

  251. Suzuki K, Imajoh S, Emori Y, Kawasaki H, Minami Y, Ohno S (1988) Regulation of activity of calcium activated neutral protease. Adv Enzyme Regul 27:153–169. https://doi.org/10.1016/0065-2571(88)90015-5

    Article  CAS  PubMed  Google Scholar 

  252. Suzuki T, Palus S, Springer J (2018) Skeletal muscle wasting in chronic heart failure. ESC Heart Fail 5:1099–1107. https://doi.org/10.1002/ehf2.12387

    Article  PubMed  PubMed Central  Google Scholar 

  253. Syed FM, Hahn HS, Odley A, Guo Y, Vallejo JG, Lynch RA, Mann DL, Bolli R, Dorn GW (2005) Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circ Res 96:1103–1109. https://doi.org/10.1161/01.RES.0000166925.45995.ed

    Article  CAS  PubMed  Google Scholar 

  254. Sympson CJ, Talhouk RS, Alexander CM, Chin JR, Clift SM, Bissell MJ, Werb Z (1994) Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol 125:681–693. https://doi.org/10.1083/jcb.125.3.681

    Article  CAS  PubMed  Google Scholar 

  255. Szpaderska AM, Silberman S, Ahmed Y, Frankfater A (2004) Sp1 regulates cathepsin B transcription and invasiveness in murine B16 melanoma cells. Anticancer Res 24:3887–3891

    CAS  PubMed  Google Scholar 

  256. Takahashi K, Ueno T, Tanida I, Minematsu-Ikeguchi N, Murata M, Kominami E (2009) Characterization of CAA0225, a novel inhibitor specific for cathepsin L, as a probe for autophagic proteolysis. Biol Pharm Bull 32:475–479. https://doi.org/10.1248/bpb.32.475

    Article  CAS  PubMed  Google Scholar 

  257. Takino T, Sato H, Shinagawa A, Seiki M (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 270:23013–23020. https://doi.org/10.1074/jbc.270.39.23013

    Article  CAS  PubMed  Google Scholar 

  258. Taleb S, Cancello R, Clément K, Lacasa D (2006) Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology 147:4950–4959. https://doi.org/10.1210/en.2006-0386

    Article  CAS  PubMed  Google Scholar 

  259. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911. https://doi.org/10.1074/jbc.272.29.17907

    Article  CAS  PubMed  Google Scholar 

  260. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J (1992) A novel heterodimeric cysteine protease is required for interleukin-1βprocessing in monocytes. Nature 356:768–774. https://doi.org/10.1038/356768a0

    Article  CAS  PubMed  Google Scholar 

  261. Thorpe M, Fu Z, Chahal G, Akula S, Kervinen J, de Garavilla L, Hellman L (2018) Extended cleavage specificity of human neutrophil cathepsin G: a low activity protease with dual chymase and tryptase-type specificities. PLoS ONE 13:0195077. https://doi.org/10.1371/journal.pone.0195077

    Article  CAS  Google Scholar 

  262. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction (2018) Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 72:2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038

    Article  Google Scholar 

  263. Tiwari M, Hemalatha T, Ganesan K, Nayeem M, Manohar BM, Balachandran C, Vairamuthu S, Subramaniam S, Puvanakrishnan R (2008) Myocardial ischemia and reperfusion injury in rats: lysosomal hydrolases and matrix metalloproteinases mediated cellular damage. Mol Cell Biochem 312:81–91. https://doi.org/10.1007/s11010-008-9723-7

    Article  CAS  PubMed  Google Scholar 

  264. Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilágyi A, Bánóczi Z, Hudecz F, Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279:20775–20785. https://doi.org/10.1074/jbc.M313873200

    Article  CAS  PubMed  Google Scholar 

  265. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711. https://doi.org/10.1161/01.cir.93.4.704

    Article  CAS  PubMed  Google Scholar 

  266. Towatari T, Nikawa T, Murata M, Yokoo C, Tamai M, Hanada K, Katunuma N (1991) Novel epoxysuccinyl peptides. A selective inhibitor of cathepsin B, in vivo. FEBS Lett 280:311–315. https://doi.org/10.1016/0014-5793(91)80319-x

    Article  CAS  PubMed  Google Scholar 

  267. Tsujinaka T, Kajiwara Y, Kambayashi J, Sakon M, Higuchi N, Tanaka T, Mori T (1988) Synthesis of a new cell penetrating calpain inhibitor (calpeptin). Biochem Biophys Res Commun 153:1201–1208. https://doi.org/10.1016/s0006-291x(88)81355-x

    Article  CAS  PubMed  Google Scholar 

  268. Tuccinardi T, Martinelli A, Nuti E, Carelli P, Balzano F, Uccello-Barretta G, Murphy G, Rossello A (2006) Amber force field implementation, molecular modelling study, synthesis and MMP-1/MMP-2 inhibition profile of (R)- and (S)-N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamides. Bioorg Med Chem 14:4260–4276. https://doi.org/10.1016/j.bmc.2006.01.056

    Article  CAS  PubMed  Google Scholar 

  269. Turk D, Janjić V, Štern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B (2001) Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 20:6570–6582. https://doi.org/10.1093/emboj/20.23.6570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88. https://doi.org/10.1016/j.bbapap.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  271. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633. https://doi.org/10.1093/emboj/20.17.4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Uría JA, López-Otín C (2000) Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res 60:4745–4751

    PubMed  Google Scholar 

  273. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA (2003) First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther 41:441–449. https://doi.org/10.5414/cpp41441

    Article  CAS  PubMed  Google Scholar 

  274. Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ (1998) Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res 82:261–271. https://doi.org/10.1161/01.res.82.2.261

    Article  PubMed  Google Scholar 

  275. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582. https://doi.org/10.1073/pnas.87.14.5578

    Article  PubMed  PubMed Central  Google Scholar 

  276. Verma RP, Hansch C (2007) Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 15:2223–2268. https://doi.org/10.1016/j.bmc.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  277. Verma S, Dixit R, Pandey KC (2016) Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol 7:107. https://doi.org/10.3389/fphar.2016.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, León H, van Mulligen T, Schulz R (2009) Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77:826–834. https://doi.org/10.1016/j.bcp.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  279. Vidak E, Javoršek U, Vizovišek M, Turk B (2019) Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells 8:264. https://doi.org/10.3390/cells8030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Vidal-Albalat A, González FV (2016) Natural products as cathepsin inhibitors. Stud Nat Prod Chem 50:179–213. https://doi.org/10.1016/B978-0-444-63749-900006-2

    Article  CAS  Google Scholar 

  281. Vizovišek M, Fonović M, Turk B (2019) Cysteine cathepsins in extracellular matrix remodeling: extracellular matrix degradation and beyond. Matrix Biol 75–76:141–159. https://doi.org/10.1016/j.matbio.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  282. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JRB, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549. https://doi.org/10.1161/01.cir.0000028818.33488.7b

    Article  CAS  PubMed  Google Scholar 

  283. Wang WM, Ge G, Lim NH, Nagase H, Greenspan DS (2006) TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. Biochem J 398:515–519. https://doi.org/10.1042/BJ20060630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Weeks AM, Wells JA (2018) Engineering peptide ligase specificity by proteomic identification of ligation sites. Nat Chem Biol 14:50–57. https://doi.org/10.1038/nchembio.2521

    Article  CAS  PubMed  Google Scholar 

  285. Weninger G, Pochechueva T, El Chami D, Luo X, Kohl T, Brandenburg S, Urlaub H, Guan K, Lenz C, Lehnart SE (2022) Calpain cleavage of junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT1-fragment domains in cardiomyocytes. Sci Rep 12:10387. https://doi.org/10.1038/s41598-022-14320-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wiederanders B, Brömme D, Kirschke H, von Figura K, Schmidt B, Peters C (1992) Phylogenetic conservation of cysteine proteinases. Cloning and expression of a cDNA coding for human cathepsin S. J Biol Chem 267:13708–13713

    Article  CAS  PubMed  Google Scholar 

  287. Will H, Hinzmann B (1995) cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur J Biochem 231:602–608. https://doi.org/10.1111/j.1432-1033.1995.tb20738.x

    Article  CAS  PubMed  Google Scholar 

  288. Woessner JF (1962) Catabolism of collagen and non-collagen protein in the rat uterus during post-partum involution. Biochem J 83:304–314. https://doi.org/10.1042/bj0830304

    Article  CAS  PubMed  Google Scholar 

  289. Woolley DE, Roberts DR, Evanson JM (1975) Inhibition of human collagenase activity by a small molecular weight serum protein. Biochem Biophys Res Commun 66:747–754. https://doi.org/10.1016/0006-291x(75)90573-2

    Article  CAS  PubMed  Google Scholar 

  290. World Health Organization (WHO) (2019) Global health estimates: life expectancy and leading causes of death and disability. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates

  291. Yamada A, Uegaki A, Nakamura T, Ogawa K (2000) ONO-4817, an orally active matrix metalloproteinase inhibitor, prevents lipopolysaccharide-induced proteoglycan release from the joint cartilage in guinea pigs. Inflamm Res 49:144–146. https://doi.org/10.1007/s000110050573

    Article  CAS  PubMed  Google Scholar 

  292. Yang XM, Cohen MV, Sayner S, Audia JP, Downey JM (2023) Lethal caspase-1/4-dependent injury occurs in the first minutes of coronary reperfusion and requires calpain activity. Int J Mol Sci 24:3801. https://doi.org/10.3390/ijms24043801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281. https://doi.org/10.1161/01.cir.97.3.276

    Article  CAS  PubMed  Google Scholar 

  294. Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422–432. https://doi.org/10.1016/s0008-6363(96)00254-4

    Article  CAS  PubMed  Google Scholar 

  295. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. https://doi.org/10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  296. Yoshimura N, Murachi T, Heath R, Kay J, Jasani B, Newman GR (1986) Immunogold electron-microscopic localisation of calpain I in skeletal muscle of rats. Cell Tissue Res 244:265–270. https://doi.org/10.1007/BF00219201

    Article  CAS  PubMed  Google Scholar 

  297. Yoshizawa T, Sorimachi H, Tomioka S, Ishiura S, Suzuki K (1995) Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun 208:376–383. https://doi.org/10.1006/bbrc.1995.1348

    Article  CAS  PubMed  Google Scholar 

  298. Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L (2022) CARD9 regulation and its role in cardiovascular diseases. Int J Biol Sci 18:970–982. https://doi.org/10.7150/ijbs.65979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Zhang X, Luo S, Wang M, Shi GP (2020) Cysteinyl cathepsins in cardiovascular diseases. Biochim Biophys Acta Proteins Proteom 1868:140360 doi:https://doi.org/10.1016/j.bbapap.2020.140360

  300. Zhang X, Zhou Y, Yu X, Huang Q, Fang W, Li J, Bonventre JV, Sukhova GK, Libby P, Shi GP (2019) Differential roles of cysteinyl cathepsins in tgf-β signaling and tissue fibrosis. iScience 19:607–622 doi:https://doi.org/10.1016/j.isci.2019.08.014

  301. Zhang Z, Biesiadecki BJ, Jin JP (2006) Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage. Biochemistry 45:11681–11694. https://doi.org/10.1021/bi060273s

    Article  CAS  PubMed  Google Scholar 

  302. Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6:644–651. https://doi.org/10.1038/sj.cdd.4400536

    Article  CAS  PubMed  Google Scholar 

  303. Zhou HZ, Ma X, Gray MO, Zhu BQ, Nguyen AP, Baker AJ, Simonis U, Cecchini G, Lovett DH, Karliner JS (2007) Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 358:189–195. https://doi.org/10.1016/j.bbrc.2007.04.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Antoine Dufour for helpful comments. We gratefully acknowledge funding from the Natural Sciences and Engineering Research Council (NSERC RGPIN-2018-05881 to O.J.) and the Canadian Institutes of Health Research (CIHR FDN-143299 to R.S.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RS and OJ; literature search: BH and WB; data analysis: BH and WB; draft preparation: BH and WB; revisions: BH, WB, OJ, and RS.

Corresponding authors

Correspondence to Richard Schulz or Olivier Julien.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartley, B., Bassiouni, W., Schulz, R. et al. The roles of intracellular proteolysis in cardiac ischemia–reperfusion injury. Basic Res Cardiol 118, 38 (2023). https://doi.org/10.1007/s00395-023-01007-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-023-01007-z

Keywords

Navigation