Skip to main content

Advertisement

Log in

Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ischemic preconditioning (IP) is a well-known strategy to protect organs against cell death following ischemia. The previous work has shown that vasodilator-stimulated phosphoprotein (VASP) is involved in cytoskeletal reorganization and that it holds significant importance for the extent of myocardial ischemia reperfusion injury. Yet, the role of VASP during myocardial IP is, to date, not known. We report here that VASP phosphorylation at serine157 and serine239 is induced during hypoxia in vitro and during IP in vivo. The preconditioning-induced VASP phosphorylation inactivates the GP IIb/IIIa integrin receptor on platelets, which results in the reduced formation of organ compromising platelet neutrophil complexes. Experiments in chimeric mice confirmed the importance of VASP phosphorylation during myocardial IP. When studying this in VASP/ animals and in an isolated heart model, we were able to confirm the important role of VASP on myocardial IP. In conclusion, we were able to show that IP-induced VASP phosphorylation in platelets is a protective mechanism against the deleterious effects of ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bachmann C, Fischer L, Walter U, Reinhard M (1999) The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 274:23549–23557

    Article  CAS  PubMed  Google Scholar 

  2. Bennett JS, Zigmond S, Vilaire G, Cunningham ME, Bednar B (1999) The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. J Biol Chem 274:25301–25307

    Article  CAS  PubMed  Google Scholar 

  3. Benz PM, Blume C, Moebius J, Oschatz C, Schuh K, Sickmann A, Walter U, Feller SM, Renne T (2008) Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol 180:205–219. https://doi.org/10.1083/jcb.200709181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benz PM, Blume C, Seifert S, Wilhelm S, Waschke J, Schuh K, Gertler F, Munzel T, Renne T (2009) Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J Cell Sci 122:3954–3965. https://doi.org/10.1242/jcs.044537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bibli SI, Zhou Z, Zukunft S, Fisslthaler B, Andreadou I, Szabo C, Brouckaert P, Fleming I, Papapetropoulos A (2017) Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx058

    PubMed  Google Scholar 

  6. Cohen MV, Yang XM, White J, Yellon DM, Bell RM, Downey JM (2016) Cangrelor-mediated cardioprotection requires platelets and sphingosine phosphorylation. Cardiovasc Drugs Ther 30:229–232. https://doi.org/10.1007/s10557-015-6633-2

    Article  CAS  PubMed  Google Scholar 

  7. Eckle T, Grenz A, Kohler D, Redel A, Falk M, Rolauffs B, Osswald H, Kehl F, Eltzschig HK (2006) Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am J Physiol Heart Circ Physiol 291:H2533–H2540. https://doi.org/10.1152/ajpheart.00472.2006

    Article  CAS  PubMed  Google Scholar 

  8. Ferron F, Rebowski G, Lee SH, Dominguez R (2007) Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J 26:4597–4606. https://doi.org/10.1038/sj.emboj.7601874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W (1981) Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600

    Article  CAS  PubMed  Google Scholar 

  10. Freynhofer MK, Brozovic I, Bruno V, Farhan S, Vogel B, Jakl G, Willheim M, Hubl W, Wojta J, Huber K (2011) Multiple electrode aggregometry and vasodilator stimulated phosphoprotein-phosphorylation assay in clinical routine for prediction of postprocedural major adverse cardiovascular events. Thromb Haemost 106:230–239. https://doi.org/10.1160/TH11-02-0077

    Article  CAS  PubMed  Google Scholar 

  11. Geiger J, Teichmann L, Grossmann R, Aktas B, Steigerwald U, Walter U, Schinzel R (2005) Monitoring of clopidogrel action: comparison of methods. Clin Chem 51:957–965. https://doi.org/10.1373/clinchem.2004.047050

    Article  CAS  PubMed  Google Scholar 

  12. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200

    Article  CAS  PubMed  Google Scholar 

  13. Hart ML, Much C, Gorzolla IC, Schittenhelm J, Kloor D, Stahl GL, Eltzschig HK (2008) Extracellular adenosine production by ecto-5′-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 135(1739–1750):e1733. https://doi.org/10.1053/j.gastro.2008.07.064

    Google Scholar 

  14. Hausenloy DJ, Garcia-Dorado D, Botker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P (2017) Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 113:564–585. https://doi.org/10.1093/cvr/cvx049

    Article  PubMed  Google Scholar 

  15. Hauser W, Knobeloch KP, Eigenthaler M, Gambaryan S, Krenn V, Geiger J, Glazova M, Rohde E, Horak I, Walter U, Zimmer M (1999) Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 96:8120–8125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  17. Heusch G (2013) Remote conditioning: the future of cardioprotection? J Cardiovasc Med (Hagerstown) 14:176–179. https://doi.org/10.2459/JCM.0b013e328358e507

    Article  Google Scholar 

  18. Heusch G (2015) Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr Physiol 5:1123–1145. https://doi.org/10.1002/cphy.c140075

    Article  PubMed  Google Scholar 

  19. Holt MR, Critchley DR, Brindle NP (1998) The focal adhesion phosphoprotein, VASP. Int J Biochem Cell Biol 30:307–311

    Article  CAS  PubMed  Google Scholar 

  20. Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsiek K, Walter U (1994) Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 225:21–27

    Article  CAS  PubMed  Google Scholar 

  21. Kawamura T, Nara N, Kadosaki M, Inada K, Endo S (2000) Prostaglandin E1 reduces myocardial reperfusion injury by inhibiting proinflammatory cytokines production during cardiac surgery. Crit Care Med 28:2201–2208

    Article  CAS  PubMed  Google Scholar 

  22. Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T, Seguchi O, Myoishi M, Minamino T, Ohara T, Nagai Y, Nanto S, Watanabe K, Fukuzawa S, Hirayama A, Nakamura N, Kimura K, Fujii K, Ishihara M, Saito Y, Tomoike H, Kitamura S, J-WIND Investigators (2007) Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370:1483–1493. https://doi.org/10.1016/S0140-6736(07)61634-1

    Article  CAS  PubMed  Google Scholar 

  23. Kohler D, Birk P, Konig K, Straub A, Eldh T, Morote-Garcia JC, Rosenberger P (2011) Phosphorylation of vasodilator-stimulated phosphoprotein (VASP) dampens hepatic ischemia–reperfusion injury. PLoS One 6:e29494. https://doi.org/10.1371/journal.pone.0029494

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kohler D, Straub A, Weissmuller T, Faigle M, Bender S, Lehmann R, Wendel HP, Kurz J, Walter U, Zacharowski K, Rosenberger P (2011) Phosphorylation of vasodilator-stimulated phosphoprotein prevents platelet–neutrophil complex formation and dampens myocardial ischemia–reperfusion injury. Circulation 123:2579–2590. https://doi.org/10.1161/CIRCULATIONAHA.110.014555

    Article  PubMed  Google Scholar 

  25. Lee HT, Emala CW (2002) Preconditioning and adenosine protect human proximal tubule cells in an in vitro model of ischemic injury. J Am Soc Nephrol 13:2753–2761

    Article  CAS  PubMed  Google Scholar 

  26. Morel O, Bernhard N, Desprez D, Grunebaum L, Freyssinet JM, Toti F, Bareiss P (2008) Residual prothrombotic status in low responder patients to clopidogrel identified by vasodilator-stimulated phosphoprotein phosphorylation (VASP) analysis? Thromb Haemost 99:448–451. https://doi.org/10.1160/TH07-10-0647

    CAS  PubMed  Google Scholar 

  27. Morel O, Viellard C, Faure A, Jesel L, Ohlmann P, Desprez D, Chauvin M, Roul G, Grunebaum L, Bareiss P (2007) Platelet responsiveness to clopidogrel in patients with coronary syndrome. Comparison of platelet aggregation induced by ADP and flow cytometric analysis of intraplatelet VASP phosphorylation. Ann Cardiol Angeiol (Paris) 56:21–29. https://doi.org/10.1016/j.ancard.2006.11.005

    Article  CAS  Google Scholar 

  28. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, Unertl K, Eltzschig HK (2009) Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10:195–202. https://doi.org/10.1038/ni.1683

    Article  CAS  PubMed  Google Scholar 

  30. Stazi A, Scalone G, Laurito M, Milo M, Pelargonio G, Narducci ML, Parrinello R, Figliozzi S, Bencardino G, Perna F, Lanza GA, Crea F (2014) Effect of remote ischemic preconditioning on platelet activation and reactivity induced by ablation for atrial fibrillation. Circulation 129:11–17. https://doi.org/10.1161/CIRCULATIONAHA.113.005336

    Article  CAS  PubMed  Google Scholar 

  31. Straub A, Krajewski S, Hohmann JD, Westein E, Jia F, Bassler N, Selan C, Kurz J, Wendel HP, Dezfouli S, Yuan Y, Nandurkar H, Jackson S, Hickey MJ, Peter K (2011) Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target. Arterioscler Thromb Vasc Biol 31:1607–1616. https://doi.org/10.1161/ATVBAHA.111.226373

    Article  CAS  PubMed  Google Scholar 

  32. Uhl L, Assmann SF, Hamza TH, Harrison RW, Gernsheimer T, Slichter SJ (2017) Laboratory predictors of bleeding and the effect of platelet and RBC transfusions on bleeding outcomes in the PLADO trial. Blood 130:1247–1258. https://doi.org/10.1182/blood-2017-01-757930

    Article  CAS  PubMed  Google Scholar 

  33. Walter U, Gambaryan S (2009) cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb Exp Pharmacol 191:533–548. https://doi.org/10.1007/978-3-540-68964-5_23

    Article  CAS  Google Scholar 

  34. Weissmuller T, Campbell EL, Rosenberger P, Scully M, Beck PL, Furuta GT, Colgan SP (2008) PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J Clin Investig 118:3682–3692. https://doi.org/10.1172/JCI35874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zarbock A, Polanowska-Grabowska RK, Ley K (2007) Platelet–neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 21:99–111. https://doi.org/10.1016/j.blre.2006.06.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG): Grants DFG-RO 3671/6-2 to P.R. and (SFB 834 to PMB and IF).

Author information

Authors and Affiliations

Authors

Contributions

DK: designed research, performed experiments, analyzed data, and wrote the manuscript. S-IB: performed experiments and analyzed data. Lothar Klammer: performed experiments. JMR: performed experiments. RL: analyzed data. TG: performed experiments and analyzed data. IF: designed research and analyzed data. AS: elaborate experiments, analyzed data, and wrote the manuscript. PMB: performed experiments, analyzed data, and wrote parts of the manuscript. PR: designed research and wrote the manuscript.

Corresponding author

Correspondence to Peter Rosenberger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

All animal studies have been approved by the appropriate ethics committee and have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments (Institutional Animal Care and Use Committee of the Tübingen University Hospital and the Regierungspräsidium Tübingen). After written informed consent was obtained from each person studied, blood was withdrawn and bloodcells isolated from whole blood. The withdrawl was approved by the Institutional Review Board of Tübingen University (ethics committee). Therefore, all studies were human blood was used were in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 Flow cytometric detection of the leukocyte population (upper dot plot) and platelets as well as platelet–platelet/platelet–leukocyte aggregates (lower dot plot) a)

Upper dot plot: Granulocytes, monocytes, and lymphocytes are detected in specific regions. The lower dot plot indicates platelets as well as platelet/platelet–granulocyte aggregates b and c) Dilution series determines maximal possible VASP phosphorylation at site serine 153 and serine 235 using the well-known potent phosphorylating agent PGE1 (n=4 per group) in murine thrombocytes and neutrophil granulocytes. d and e) Maximal possible VASP phosphorylation at site serine 153 and serine 235 using PGE1 (n=4 per group) in murine platelets and neutrophil granulocytes based on %-gated (TIFF 729 kb)

Supplemental Fig. 2 Negative controls for myocardial tissue stainings.

(TIFF 2076 kb)

Supplemental Fig. 3 Verification of successful generation of VASP-chimeric animals a)

Western Blot analysis of chimeric mice following bone marrow transplantation demonstrating VASP expression in the myocardial tissue and blood of WT → WT transplanted animals, myeloid WT into VASP-/- animals (WT → VASP-/-), and VASP-/- in WT animals (VASP-/- → WT), and VASP-/-VASP-/-transplanted control animals (pooled samples of n=6/ group). (TIFF 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhler, D., Bibli, SI., Klammer, L.P. et al. Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning. Basic Res Cardiol 113, 11 (2018). https://doi.org/10.1007/s00395-018-0667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-018-0667-0

Keywords

Navigation