Skip to main content

Advertisement

Log in

Obesity induced-insulin resistance causes endothelial dysfunction without reducing the vascular response to hindlimb ischemia

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Impairment of vascular growth is a hallmark of diabetic complications, but the progression and mechanisms are poorly understood. To determine whether obesity and early diabetes impair endothelium-dependent vasodilatation and vascular response to ischemia, microvascular function as well as angiogenic responses to ischemia were assessed in young (C57) and 6-month-old lean mice (old C57), in obese (db-C57) mice, and in mice suffering an early (db-KsJ) and sustained type 2 diabetes (old db-KsJ). Glycemia gradually increased from the db-C57 to the old db-KsJ. Early and established type II diabetes significantly reduced the level of insulin that was significantly increased in obese mice. Endothelial function was assessed in isolated resistance arteries while the angiogenic response induced by unilateral hindlimb ischemia was analyzed, after 28 days, with a laser Doppler flowmeter and angiography. Aging (−21%), obesity (−45%), as well as early (−58%) and sustained type II diabetes (−69%) induced a progressive impairment of the endothelium-dependent relaxation of the gracilis artery. Laser Doppler measurements demonstrated that only early and sustained type II diabetes impaired skin blood flow recovery. Vascular collateralization was reduced with aging and severely impaired in older db-KsJ mice, the two strains of mice in which ischemia reduced eNOS expression. These results demonstrate that endothelial dysfunction induced by obesity is insufficient to alter the angiogenic response to ischemia. Furthermore, the development of frank type II diabetes or increasing age is required to impair the vascular response to hindlimb ischemia. We conclude that additional risk factors or severe endothelial dysfunction may be requisite to impede the angiogenic response to ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baron-Menguy C, Bocquet A, Guihot AL, Chappard D, Amiot MJ, Andriantsitohaina R, Loufrani L, Henrion D (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J 21:3511–3521

    Article  CAS  PubMed  Google Scholar 

  2. Belin de Chantemele EJ, Vessieres E, Guihot A-L, Toutain B, Maquignau M, Loufrani L, Henrion D (2009) Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow. Cardiovasc Res 81:788–796

    Article  PubMed  Google Scholar 

  3. Berglund O, Frankel BJ, Hellman B (1978) Development of the insulin secretory defect in genetically diabetic (db/db) mouse. Acta Endocrinol (Copenh) 87:543–551

    CAS  Google Scholar 

  4. Boquist L, Hellman B, Lernmark A, Taljedal IB (1974) Influence of the mutation “diabetes” on insulin release and islet morphology in mice of different genetic backgrounds. J Cell Biol 62:77–89

    Article  CAS  PubMed  Google Scholar 

  5. Bouvet C, Belin de Chantemele E, Guihot A-L, Vessieres E, Bocquet A, Dumont O, Jardel A, Loufrani L, Moreau P, Henrion D (2007) Flow-induced remodeling in resistance arteries from obese zucker rats is associated with endothelial dysfunction. Hypertension 50:248–254

    Article  CAS  PubMed  Google Scholar 

  6. Brevetti LS, Chang DS, Tang GL, Sarkar R, Messina LM (2003) Overexpression of endothelial nitric oxide synthase increases skeletal muscle blood flow and oxygenation in severe rat hind limb ischemia. J Vasc Surg 38:820–826

    Article  PubMed  Google Scholar 

  7. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, King GL, LoGerfo FW, Horton ES, Veves A (1999) Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 48:1856–1862

    Article  CAS  PubMed  Google Scholar 

  8. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679

    CAS  PubMed  Google Scholar 

  9. Duan J, Murohara T, Ikeda H, Katoh A, Shintani S, Sasaki K, Kawata H, Yamamoto N, Imaizumi T (2000) Hypercholesterolemia inhibits angiogenesis in response to hindlimb ischemia: nitric oxide-dependent mechanism. Circulation 102:III-370–III-376

    CAS  Google Scholar 

  10. Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre J-S (2005) Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol 25:65–70

    CAS  PubMed  Google Scholar 

  11. Frisbee JC (2005) Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 289:R307–R316

    CAS  PubMed  Google Scholar 

  12. Frisbee JC (2003) Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats. Am J Physiol Heart Circ Physiol 285:H104–H111

    PubMed  Google Scholar 

  13. Frisbee JC, Samora JB, Peterson J, Bryner R (2006) Exercise training blunts microvascular rarefaction in the metabolic syndrome. Am J Physiol Heart Circ Physiol 291:H2483–H2492

    Article  CAS  PubMed  Google Scholar 

  14. Frisbee JC, Stepp DW (2001) Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 281:H1304–H1311

    CAS  PubMed  Google Scholar 

  15. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164:1935–1947

    CAS  PubMed  Google Scholar 

  16. Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewari-Singh N, Capobianco S, Chilian WM, Zhang C (2007) Tumor necrosis factor-{alpha} induces endothelial dysfunction in Leprdb mice. Circulation 115:245–254

    Article  CAS  PubMed  Google Scholar 

  17. Garris DR, Garris BL (2004) Cytochemical analysis of pancreatic islet hypercytolipidemia following diabetes (db/db) and obese (ob/ob) mutation expression: influence of genomic background. Pathobiology 71:231–240

    Article  CAS  PubMed  Google Scholar 

  18. Gunnarsson R (1975) Function of the pancreatic B-cell during the development of hyperglycaemia in mice homozygous for the mutations “diabetes” (db) and “misty” (m). Diabetologia 11:431–438

    Article  CAS  PubMed  Google Scholar 

  19. Hattan N, Chilian WM, Park F, Rocic P (2007) Restoration of coronary collateral growth in the Zucker obese rat: impact of VEGF and ecSOD. Basic Res Cardiol 102:217–223

    Article  CAS  PubMed  Google Scholar 

  20. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956

    Article  CAS  PubMed  Google Scholar 

  21. Hummel KP, Coleman DL, Lane PW (1972) The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet 7:1–13

    Article  CAS  PubMed  Google Scholar 

  22. Lauer T, Heiss C, Balzer J, Kehmeier E, Mangold S, Leyendecker T, Rottler J, Meyer C, Merx MW, Kelm M, Rassaf T (2008) Age-dependent endothelial dysfunction is associated with failure to increase plasma nitrite in response to exercise. Basic Res Cardiol 103:291–297

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Hazarika S, Xie D, Pippen AM, Kontos CD, Annex BH (2007) In mice with type 2 diabetes, a vascular endothelial growth factor (VEGF)-activating transcription factor modulates VEGF signaling and induces therapeutic angiogenesis after hindlimb ischemia. Diabetes 56:656–665

    Article  CAS  PubMed  Google Scholar 

  24. Marshall JM, Davies WR (1999) The effects of acute and chronic systemic hypoxia on muscle oxygen supply and oxygen consumption in the rat. Exp Physiol 84:57–68

    Article  CAS  PubMed  Google Scholar 

  25. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM (2002) Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105:2185–2191

    Article  CAS  PubMed  Google Scholar 

  26. Melanson KJ, McInnis KJ, Rippe JM, Blackburn G, Wilson PF (2001) Obesity and cardiovascular disease risk: research update. Cardiol Rev 9:202–207

    Article  CAS  PubMed  Google Scholar 

  27. Miller AW, Tulbert C, Puskar M, Busija DW (2002) Enhanced endothelin activity prevents vasodilation to insulin in insulin resistance. Hypertension 40:78–82

    Article  CAS  PubMed  Google Scholar 

  28. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    Article  CAS  PubMed  Google Scholar 

  29. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918

    Article  PubMed  Google Scholar 

  30. Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with Adeno-VEGF. Am J Pathol 154:355–363

    CAS  PubMed  Google Scholar 

  31. Romanko OP, Stepp DW (2005) Reduced constrictor reactivity balances impaired vasodilation in the mesenteric circulation of the obese Zucker rat. Am J Physiol Heart Circ Physiol 289:H2097–H2102

    Article  CAS  PubMed  Google Scholar 

  32. Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K (2005) Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol 25:1603–1609

    Article  CAS  PubMed  Google Scholar 

  33. Serne EH, Stehouwer CDA, ter Maaten JC, ter Wee PM, Rauwerda JA, Donker AJM, Gans ROB (1999) Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation 99:896–902

    CAS  PubMed  Google Scholar 

  34. Shoji T, Koyama H, Morioka T, Tanaka S, Kizu A, Motoyama K, Mori K, Fukumoto S, Shioi A, Shimogaito N, Takeuchi M, Yamamoto Y, Yonekura H, Yamamoto H, Nishizawa Y (2006) Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes 55:2245–2255

    Article  CAS  PubMed  Google Scholar 

  35. Silvestre J-S, Mallat Z, Tamarat R, Duriez M, Tedgui A, Levy BI (2001) Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemia-induced angiogenesis. Circ Res 89:259–264

    Article  CAS  PubMed  Google Scholar 

  36. Smith RS Jr, Lin K-F, Agata J, Chao L, Chao J (2002) Human endothelial nitric oxide synthase gene delivery promotes angiogenesis in a rat model of hindlimb ischemia. Arterioscler Thromb Vasc Biol 22:1279–1285

    Article  CAS  PubMed  Google Scholar 

  37. Stepp DW (2006) Impact of obesity and insulin resistance on vasomotor tone: nitric oxide and beyond. Clin Exp Pharmacol Physiol 33:407–414

    Article  CAS  PubMed  Google Scholar 

  38. Stepp DW, Pollock DM, Frisbee JC (2004) Low-flow vascular remodeling in the metabolic syndrome X. Am J Physiol Heart Circ Physiol 286:H964–H970

    Article  CAS  PubMed  Google Scholar 

  39. Tamarat R, Silvestre J-S, Huijberts M, Benessiano J, Ebrahimian TG, Duriez M, Wautier M-P, Wautier JL, Levy BI (2003) Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci USA 100:8555–8560

    Article  CAS  PubMed  Google Scholar 

  40. Tamarat R, Silvestre J-S, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Levy BI (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164:457–466

    CAS  PubMed  Google Scholar 

  41. Van Belle E, Rivard A, Chen D, Silver M, Bunting S, Ferrara N, Symes JF, Bauters C, Isner JM (1997) Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96:2667–2674

    PubMed  Google Scholar 

  42. Wilson PW (2004) Estimating cardiovascular disease risk and the metabolic syndrome: a Framingham view. Endocrinol Metab Clin North Am. 33:467–481, v

    Google Scholar 

  43. Wilson PWF, D’Agostino RB, Parise H, Sullivan L, Meigs JB (2005) Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112:3066–3072

    Article  CAS  PubMed  Google Scholar 

  44. Yamagishi S, Kawakami T, Fujimori H, Yonekura H, Tanaka N, Yamamoto Y, Urayama H, Watanabe Y, Yamamoto H (1999) Insulin stimulates the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. Microvasc Res 57:329–339

    Article  CAS  PubMed  Google Scholar 

  45. Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA 102:10999–11004

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406

    Article  CAS  PubMed  Google Scholar 

  47. Zhang C, Park Y, Picchi A, Potter BJ (2008) Maturation-induces endothelial dysfunction via vascular inflammation in diabetic mice. Basic Res Cardiol 103:407–416

    Article  CAS  PubMed  Google Scholar 

  48. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99:2625–2634

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Stepp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belin de Chantemèle, E.J., Irfan Ali, M., Mintz, J. et al. Obesity induced-insulin resistance causes endothelial dysfunction without reducing the vascular response to hindlimb ischemia. Basic Res Cardiol 104, 707–717 (2009). https://doi.org/10.1007/s00395-009-0042-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0042-2

Keywords

Navigation