Skip to main content
Log in

Restoration of coronary collateral growth in the Zucker obese rat:

Impact of VEGF and ecSOD

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The metabolic syndrome (MS), a condition characterized by several risk factors for coronary artery disease, including obesity, is associated with endothelial dysfunction and oxidative stress. Because proper endothelial function is essential for signaling of certain growth factors (vascular endothelial growth factor, VEGF) we hypothesized that coronary collateral growth (CCG) is impaired in a model of the MS. To test this hypothesis, we stimulated coronary collateral growth in pre-diabetic Zucker obese fatty rats (OZR) and lean littermates (LZR) by using episodic, repetitive ischemia (RI: 40 s left anterior descending arterial occlusion, 24/d for 14 d). Myocardial blood flow (MBF, radioactive microspheres) was measured in the normal (NZ) and collateral-dependent (ischemic) zones (CZ); CCG was assessed as a ratio of CZ/NZ flow (unity represents complete restoration of CZ flow). In LZR, CZ/NZ ratio increased from 0.18 ± 0.03 to 0.81 ± 0.07 after RI (P < 0.05). In contrast, in OZR rats CZ/NZ did not increase after RI (0.15 ± 0.04 vs 0.18 ± 0.04). To rectify abrogated collateral growth in OZR, we employed VEGF gene therapy (VEGF-transduced, strained-matched, cultured vascular smooth muscle cells [cVSMCs], delivered intracoronary). VEGF therapy modestly but not significantly increased the CZ/NZ ratio after RI (0.16 ± 0.05 vs 0.33 ± 0.06). To facilitate VEGF signaling,we reduced oxidative stress by transducing cVSMCs with both ecSOD and VEGF. This increased the CZ/NZ flow ratio after RI to 0.52 ± 0.04 (p < 0.05 vs. OZR [(0.19 ± 0.04]) indicating partial restoration of collateral growth. Our results demonstrate that coronary collateral growth is impaired in a model of the metabolic syndrome and that growth factor gene therapy with VEGF is made far more effective when it is coupled to an intervention that reduces oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brzezinska AK, Lohr N, Chilian WM (2005) Electrophysiological effects of O2*- on the plasma membrane in vascular endothelial cells. Am J Physiol Heart Circ Physiol 289:H2379–H2386

    Article  CAS  PubMed  Google Scholar 

  2. Chilian WM, Mass HJ, Williams SE, Layne SM, Smith EE, Scheel KW (1990) Microvascular occlusions promote coronary collateral growth. Am J Physiol Heart Circ Physiol 258: H1103–H1111

    CAS  Google Scholar 

  3. Feletou M, Vanhoutte P (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291(3):H985–H1002

    Article  CAS  PubMed  Google Scholar 

  4. Focardi M,Dick GM, Picchi A, Zhang C, WMC (2007) Restoration of coronary endothelial function in obese Zucker rats by a low carbohydrate diet. Am J Physiol Heart Circ Physiol (Epub ahead of print)

  5. Hattan N, Warltier D, Gu W, Kolz C, Chilian WM, Weihrauch D (2004) Autologous vascular smooth muscle cellbased myocardial gene therapy to induce coronary collateral growth. Am J Physiol Heart Circ Physiol 287:H488–H493

    Article  CAS  PubMed  Google Scholar 

  6. Hughes GC, Annex B (2005) Angiogenic therapy for coronary artery and peripheral arterial disease. Expert Rev Cardiovasc Ther 3(3):521–535

    Article  CAS  PubMed  Google Scholar 

  7. Jacobi J, Kristal B, Chezar J, Shaul SM, Sela S (2005) Exogenous superoxide mediates pro-oxidative, proinflammatory, and procoagulatory changes in primary endothelial cell cultures. Free Radic Biol Med 39(9):1238–1248

    Article  CAS  PubMed  Google Scholar 

  8. Kobara M, Tatsumi T, Takeda M, Mano A, Yamanaka S, Shiraishi J, Keira N, Matoba S, Asayama J, M. N (2003) The dual effects of nitric oxide synthase inhibitors on ischemia-reperfusion injury in rat hearts. Basic Res Cardiol 98(5):319–328

    Article  CAS  PubMed  Google Scholar 

  9. Konukoglu D, Serin O, Turhan M (2006) Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch Med Res 37(5):602–606

    Article  CAS  PubMed  Google Scholar 

  10. Laukkanen MO, Leppanen P, Turunen P, Tuomisto T, Naarala J, S Y-H (2001) ECSOD gene therapy reduces paracetamol- induced liver damage in mice. J Gene Med 3(4):32–325

    Article  CAS  PubMed  Google Scholar 

  11. Lee SU, Wykrzykowska JJ, Laham R (2006) Angiogenesis: bench to bedside, have we learned anything? Toxicol Pathol 34(1):3–10

    Article  CAS  PubMed  Google Scholar 

  12. Lei Y, Haider HKh, Shujia J, ES. S (2004) Therapeutic angiogenesis. Devising new strategies based on past experiences. Basic Res Cardiol 99(2):121–132

    Article  PubMed  Google Scholar 

  13. Lynch RE, Fridovich I (1978) Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem 253(13):4697–4699

    CAS  PubMed  Google Scholar 

  14. Martorana PA, Goebel B, Ruetten H, Koehl D, M. K (1998) Coronary endothelial dysfunction after ischemia and reperfusion in the dog: a functional and morphological investigation. Basic Res Cardiol 93(4):257–263

    Article  CAS  PubMed  Google Scholar 

  15. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian W (2000) Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102(25):3098–3103

    CAS  PubMed  Google Scholar 

  16. Nathoe HM, Koerselman J, Buskens E, van Dijk D, Stella PR, Plokker TH, Doevendans PA, Grobbee DE, PP; dJ, Group OS (2006) Determinants and prognostic significance of collaterals in patients undergoing coronary revascularization. Am J Cardiol 98(1):31–35

    Article  PubMed  Google Scholar 

  17. Park F, Ohashi K, K. MA (2000) Therapeutic levels of human factor VIII and IX using HIV-1 based lentiviral vectors in mouse liver. Blood 96:1173–1176

    CAS  PubMed  Google Scholar 

  18. Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, Chilian WM, Zhang C (2006) Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 99:69–77

    Article  CAS  PubMed  Google Scholar 

  19. Serkova NJ, Jackman M, Brown JL, Liu T, Hirose R, Roberts JP, Maher JJ, CU N (2006) Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol 44(5):956–962

    Article  CAS  PubMed  Google Scholar 

  20. Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, Laham RJ, Li W, Pike M, Sellke FW, Stegmann TJ, Udelson JE, Rosengart T (2000) Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circulation 102(11):E73–E86

    CAS  PubMed  Google Scholar 

  21. Terada L (1996) Hypoxia-reoxygenation increases O2- efflux which injures endothelial cells by an extracellular mechanism. Am J Physiol 270(3 Pt 2):H945–H950

    CAS  PubMed  Google Scholar 

  22. Toyota E, Warltier DC, Brock T, Ritman E, Kolz C, O’Malley P, Rocic P, Focardi M, Chilian WM (2005) Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation 112:2108–2113

    Article  CAS  PubMed  Google Scholar 

  23. Zachary I (2001) Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 280(6):C1375–C1386

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rocic PhD.

Additional information

Supported by NIH grants HL32788 (WMC), HL65203 (WMC), HL73755 (WMC), and COBRE RR018766 (FP, PR,WMC), and American Heart Association Scientist Development Grant (PR), AHA Postdoctoral Fellowship Award (NH, PR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattan, N., Chilian, W.M., Park, F. et al. Restoration of coronary collateral growth in the Zucker obese rat:. Basic Res Cardiol 102, 217–223 (2007). https://doi.org/10.1007/s00395-007-0646-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-007-0646-3

Key words