Skip to main content
Log in

Nutritive/non-nutritive sweeteners and high fat diet contribute to dysregulation of sweet taste receptors and metabolic derangements in oral, intestinal and central nervous tissues

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Objectives

Overconsumption of non-nutritive sweeteners is associated with obesity, whereas the underlying mechanisms remain controversial. This study aimed to investigate the effects of long-term consumption of nutritive or non-nutritive sweeteners with or without high fat diet on sweet taste receptor expression in nutrient-sensing tissues and energy regulation dependent on sweet-sensing.

Methods

50 Male Sprague–Dawley rats (140–160 g) were assigned to 10 groups (n = 5/group). All received fructose at 2.5% or 10%, sucralose at 0.01% or 0.015% or water with a normal chow diet or high fat diet for 12 weeks. Food and drink intake were monitored daily. Oral glucose tolerance test and intraperitoneal glucose tolerance test were performed at week 10 and 11 respectively. Serum was obtained for measurement of biochemical parameters. Tongue, duodenum, jejunum, ileum, colon and hypothalamus were rapidly removed to assess gene expression.

Results

Long-term consumption of sweeteners impaired glucose tolerance, increased calorie intake and body weight. A significant upregulation of sweet taste receptor expression was observed in all the four intestinal segments in groups fed 0.01% sucralose or 0.015% sucralose, most strikingly in the ileum, accompanied by elevated serum glucagon-like peptide-1 levels and up-regulated expression of sodium-dependent glucose cotransporter 1 and glucose transporter 2. A significant down-regulation in the tongue and hypothalamus was observed in groups fed 10% fructose or 0.015% sucralose, with alterations in hypothalamic appetite signals. The presence of high fat diet differentially modulates sweet taste perception in nutrient-sensing tissues.

Conclusions

Long-term consumption of whether nutritive sweeteners or non-nutritive sweeteners combined with high fat diet contribute to dysregulation of sweet taste receptor expression in oral, intestinal and central nervous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analysed in this current study are available from the corresponding author upon reasonable request.

Abbreviations

AGRP:

Agouti-related peptide

AUC:

Area under the curve

GLP-1:

Glucagon-like peptide-1

GLUT2:

Glucose transporter 2

HFD:

High-fat diet

IPGTT:

Intraperitoneal glucose tolerance test

NCD:

Normal control diet

NNS:

Non-nutritive sweetener

NPY:

Neuropeptide Y

OGTT:

Oral glucose tolerance test

SGLT-1:

Sodium-dependent glucose cotransporter 1

STR:

Sweet taste receptor

T1R2:

Taste receptor type 1 member 2

T1R3:

Taste receptor type 1 member 3

References

  1. Bluher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15:288–298. https://doi.org/10.1038/s41574-019-0176-8

    Article  PubMed  Google Scholar 

  2. Febbraio MA, Karin M (2021) “Sweet death”: fructose as a metabolic toxin that targets the gut-liver axis. Cell Metab 33:2316–2328. https://doi.org/10.1016/j.cmet.2021.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunter SR, Reister EJ, Cheon E et al (2019) Low calorie sweeteners differ in their physiological effects in humans. Nutrients. https://doi.org/10.3390/nu11112717

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pearlman M, Obert J, Casey L (2017) The association between artificial sweeteners and obesity. Curr Gastroenterol Rep 19:64. https://doi.org/10.1007/s11894-017-0602-9

    Article  PubMed  Google Scholar 

  5. Liem DG, Russell CG (2019) The influence of taste liking on the consumption of nutrient rich and nutrient poor foods. Front Nutr 6:174. https://doi.org/10.3389/fnut.2019.00174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Treesukosol Y, Smith KR, Spector AC (2011) The functional role of the t1r family of receptors in sweet taste and feeding. Physiol Behav 105:14–26. https://doi.org/10.1016/j.physbeh.2011.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. von Molitor E, Riedel K, Krohn M et al (2021) Sweet taste is complex: signaling cascades and circuits involved in sweet sensation. Front Hum Neurosci 15:667709–10. https://doi.org/10.3389/fnhum.2021.667709

    Article  CAS  Google Scholar 

  8. Young RL, Sutherland K, Pezos N et al (2009) Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 58:337–346. https://doi.org/10.1136/gut.2008.148932

    Article  CAS  PubMed  Google Scholar 

  9. Hass N, Schwarzenbacher K, Breer H (2010) T1r3 is expressed in brush cells and ghrelin-producing cells of murine stomach. Cell Tissue Res 339:493–504. https://doi.org/10.1007/s00441-009-0907-6

    Article  CAS  PubMed  Google Scholar 

  10. Dyer J, Salmon KS, Zibrik L et al (2005) Expression of sweet taste receptors of the t1r family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305. https://doi.org/10.1042/BST0330302

    Article  CAS  PubMed  Google Scholar 

  11. Ren X, Zhou L, Terwilliger R et al (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 3:12. https://doi.org/10.3389/neuro.07.012.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medina A, Nakagawa Y, Ma J et al (2014) Expression of the glucose-sensing receptor t1r3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states. Endocr J 61:797–805. https://doi.org/10.1507/endocrj.ej14-0221

    Article  CAS  PubMed  Google Scholar 

  13. Masubuchi Y, Nakagawa Y, Ma J et al (2013) A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3t3-l1 cells. Plos One 8:e54500. https://doi.org/10.1371/journal.pone.0054500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hao S, Yang Y, Helmy M et al (2020) Neural regulation of feeding behavior. Adv Exp Med Biol 1284:23–33. https://doi.org/10.1007/978-981-15-7086-5_3

    Article  CAS  PubMed  Google Scholar 

  15. Kohno D (2017) Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci 67:459–465. https://doi.org/10.1007/s12576-017-0535-y

    Article  CAS  PubMed  Google Scholar 

  16. Steinert RE, Gerspach AC, Gutmann H et al (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (glp-1) and peptide yy (pyy). Clin Nutr 30:524–532. https://doi.org/10.1016/j.clnu.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  17. DuBois GE (2016) Molecular mechanism of sweetness sensation. Physiol Behav 164:453–463. https://doi.org/10.1016/j.physbeh.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  18. Laffitte A, Neiers F, Briand L (2014) Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care 17:379–385. https://doi.org/10.1097/MCO.0000000000000058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomson P, Santibanez R, Aguirre C et al (2019) Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br J Nutr 122:856–862. https://doi.org/10.1017/S0007114519001570

    Article  CAS  PubMed  Google Scholar 

  20. Morales-Rios EI, Garcia-Machorro J, Briones-Aranda A et al (2022) Effect of long-term intake of nutritive and non-nutritive sweeteners on metabolic health and cognition in adult male rats. J Med Food. https://doi.org/10.1089/jmf.2022.0016

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khan AS, Murtaza B, Hichami A et al (2019) A cross-talk between fat and bitter taste modalities. Biochimie 159:3–8. https://doi.org/10.1016/j.biochi.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  22. Khorshidian N, Shadnoush M, Zabihzadeh KM et al (2021) Fructose and high fructose corn syrup: are they a two-edged sword? Int J Food Sci Nutr 72:592–614. https://doi.org/10.1080/09637486.2020.1862068

    Article  PubMed  Google Scholar 

  23. Martyn D, Darch M, Roberts A et al (2018) Low-/no-calorie sweeteners: a review of global intakes. Nutrients. https://doi.org/10.3390/nu10030357

    Article  PubMed  PubMed Central  Google Scholar 

  24. Walbolt J, Koh Y (2020) Non-nutritive sweeteners and their associations with obesity and type 2 diabetes. J Obes Metab Syndr 29:114–123. https://doi.org/10.7570/jomes19079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanchez-Tapia M, Martinez-Medina J, Tovar AR et al (2019) Natural and artificial sweeteners and high fat diet modify differential taste receptors, insulin, and tlr4-mediated inflammatory pathways in adipose tissues of rats. Nutrients. https://doi.org/10.3390/nu11040880

    Article  PubMed  PubMed Central  Google Scholar 

  26. Loney GC, Torregrossa AM, Smith JC et al (2011) Rats display a robust bimodal preference profile for sucralose. Chem Senses 36:733–745. https://doi.org/10.1093/chemse/bjr048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boye A, Acheampong DO, Gyamerah EO et al (2020) Glucose lowering and pancreato-protective effects of Abrus precatorius (L.) leaf extract in normoglycemic and STZ/nicotinamide—induced diabetic rats. J Ethnopharmacol 258:112918. https://doi.org/10.1016/j.jep.2020.112918

    Article  CAS  PubMed  Google Scholar 

  28. Kim JY, Choi MJ, So B et al (2015) The preventive effects of 8 weeks of resistance training on glucose tolerance and muscle fiber type composition in zucker rats. Diabetes Metab J 39:424–433. https://doi.org/10.4093/dmj.2015.39.5.424

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang R, Zhou J, Li M et al (2014) Ameliorating effect and potential mechanism of Rehmannia glutinosa oligosaccharides on the impaired glucose metabolism in chronic stress rats fed with high-fat diet. Phytomedicine 21:607–614. https://doi.org/10.1016/j.phymed.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  30. Shu Q, Chen L, Wu S et al (2020) Acupuncture targeting sirt1 in the hypothalamic arcuate nucleus can improve obesity in high-fat-diet-induced rats with insulin resistance via an anorectic effect. Obes Facts 13:40–57. https://doi.org/10.1159/000503752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith KR, Hussain T, Karimian AE et al (2016) Disruption of the sugar-sensing receptor t1r2 attenuates metabolic derangements associated with diet-induced obesity. Am J Physiol Endocrinol Metab 310:E688–E698. https://doi.org/10.1152/ajpendo.00484.2015

    Article  PubMed  PubMed Central  Google Scholar 

  32. Young RL (2011) Sensing via intestinal sweet taste pathways. Front Neurosci 5:23. https://doi.org/10.3389/fnins.2011.00023

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kreuch D, Keating DJ, Wu T et al (2018) Gut mechanisms linking intestinal sweet sensing to glycemic control. Front Endocrinol (Lausanne) 9:741. https://doi.org/10.3389/fendo.2018.00741

    Article  PubMed  Google Scholar 

  34. Qian C, Qi YC, Feng RL et al (2021) Sucralose can improve glucose tolerance and upregulate expression of sweet taste receptors and glucose transporters in an obese rat model. Eur J Nutr 60:1809–1817. https://doi.org/10.1007/s00394-020-02375-1

    Article  CAS  PubMed  Google Scholar 

  35. Song X, Wang F, Xu H et al (2019) 3-deoxyglucosone induces glucagon-like peptide-1 secretion from stc-1 cells via upregulating sweet taste receptor expression under basal conditions. Int J Endocrinol 2019:4959646. https://doi.org/10.1155/2019/4959646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohtsu Y, Nakagawa Y, Nagasawa M et al (2014) Diverse signaling systems activated by the sweet taste receptor in human glp-1-secreting cells. Mol Cell Endocrinol 394:70–79. https://doi.org/10.1016/j.mce.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen NQ, Debreceni TL, Bambrick JE et al (2015) Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia. J Clin Endocrinol Metab 100:968–976. https://doi.org/10.1210/jc.2014-3144

    Article  CAS  PubMed  Google Scholar 

  38. Jang HJ, Kokrashvili Z, Theodorakis MJ et al (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074. https://doi.org/10.1073/pnas.0706890104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Margolskee RF, Dyer J, Kokrashvili Z et al (2007) T1r3 and gustducin in gut sense sugars to regulate expression of na+-glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080. https://doi.org/10.1073/pnas.0706678104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kellett GL, Brot-Laroche E (2005) Apical glut2—a major pathway of intestinal sugar absorption. Diabetes 54:3056–3062. https://doi.org/10.2337/diabetes.54.10.3056

    Article  CAS  PubMed  Google Scholar 

  41. Herrera MCD, Argmann C, Van Eijk M et al (2016) Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Sci Rep 6:29094. https://doi.org/10.1038/srep29094

    Article  Google Scholar 

  42. Zhao X, Yan J, Chen K et al (2018) Effects of saccharin supplementation on body weight, sweet receptor mRNA expression and appetite signals regulation in post-weanling rats. Peptides 107:32–38. https://doi.org/10.1016/j.peptides.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  43. Schneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25–T46. https://doi.org/10.1530/JOE-13-0398

    Article  CAS  PubMed  Google Scholar 

  44. la Fleur SE, van Rozen AJ, Luijendijk MC et al (2010) A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia. Int J Obes (Lond) 34:537–546. https://doi.org/10.1038/ijo.2009.257

    Article  CAS  PubMed  Google Scholar 

  45. Guerra-Cantera S, Frago LM, Collado-Perez R et al (2021) Sex differences in metabolic recuperation after weight loss in high fat diet-induced obese mice. Front Endocrinol (Lausanne) 12:796661–8. https://doi.org/10.3389/fendo.2021.796661

    Article  PubMed  Google Scholar 

  46. Kohno D, Koike M, Ninomiya Y et al (2016) Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Front Neurosci 10:502. https://doi.org/10.3389/fnins.2016.00502

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as followed. YZ and HD designed research; YZ, LC, JG, YC, FL, XB conducted research; YZ and HD analyzed data; YZ wrote the paper; YZ and HD had primary responsibility for the final content. All authors read and approved the final version of the paper.

Corresponding author

Correspondence to Hong Ding.

Ethics declarations

Conflict of interest

Y. Zhang, L. Chen, J. Gao, Y. Cheng, F. Luo, X. Bai, H. Ding, no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, L., Gao, J. et al. Nutritive/non-nutritive sweeteners and high fat diet contribute to dysregulation of sweet taste receptors and metabolic derangements in oral, intestinal and central nervous tissues. Eur J Nutr 62, 3149–3159 (2023). https://doi.org/10.1007/s00394-023-03187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03187-9

Keywords

Navigation