Skip to main content

Advertisement

Log in

Dietary energy restriction in neurological diseases: what’s new?

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Energy-restricted diet is a specific dietary regimen, including the continuous energy-restricted diet and the intermittent energy-restricted diet. It has been proven effective not only to reduce weight and extend the lifespan in animal models, but also to regulate the development and progression of various neurological diseases such as epilepsy, cerebrovascular diseases (stroke), neurodegenerative disorders (Alzheimer's disease and Parkinson's disease) and autoimmune diseases (multiple sclerosis). However, the mechanism in this field is still not clear and a systematic neurological summary is still missing. In this review, we first give a brief summary of the definition and mainstream strategies of energy restrictions. We then review evidence about the effects of energy-restricted diet from both animal models and human trials, and update the current understanding of mechanisms underlying the biological role of energy-restricted diet in the fight against neurological diseases. Our review thus contributes to the modification of dietary regimen and the search for special diet mimics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almendariz-Palacios C, Mousseau DD, Eskiw CH, Gillespie ZE (2020) Still living better through chemistry: an update on caloric restriction and caloric restriction mimetics as tools to promote health and lifespan. Int J Mol Sci. https://doi.org/10.3390/ijms21239220

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antoni R, Johnston KL, Collins AL, Robertson MD (2018) Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. Br J Nutr 119:507–516. https://doi.org/10.1017/S0007114517003890

    Article  CAS  PubMed  Google Scholar 

  3. Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL (2019) Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients. https://doi.org/10.3390/nu11102442

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hwangbo DS, Lee HY, Abozaid LS, Min KJ (2020) Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients. https://doi.org/10.3390/nu12041194

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58. https://doi.org/10.1016/j.arr.2016.10.005

    Article  PubMed  Google Scholar 

  6. Giles GE, Mahoney CR, Caruso C, Bukhari AS, Smith TJ, Pasiakos SM, McClung JP, Lieberman HR (2019) Two days of calorie deprivation impairs high level cognitive processes, mood, and self-reported exertion during aerobic exercise: a randomized double-blind, placebo-controlled study. Brain Cogn 132:33–40. https://doi.org/10.1016/j.bandc.2019.02.003

    Article  PubMed  Google Scholar 

  7. Gilmour GS, Nielsen G, Teodoro T, Yogarajah M, Coebergh JA, Dilley MD, Martino D, Edwards MJ (2020) Management of functional neurological disorder. J Neurol 267:2164–2172. https://doi.org/10.1007/s00415-020-09772-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C (2020) The global burden of neurological disorders: translating evidence into policy. Lancet Neurol 19:255–265. https://doi.org/10.1016/S1474-4422(19)30411-9

    Article  PubMed  Google Scholar 

  9. Collaborators G B D H (2018) Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17:954–976. https://doi.org/10.1016/S1474-4422(18)30322-3

    Article  Google Scholar 

  10. Feigin VL, Vos T (2019) Global burden of neurological disorders: from global burden of disease estimates to actions. Neuroepidemiology 52:1–2. https://doi.org/10.1159/000495197

    Article  PubMed  Google Scholar 

  11. Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS (2019) Stem cell therapy for neurological disorders. S Afr Med J 109:70–77. https://doi.org/10.7196/SAMJ.2019.v109i8b.14009

    Article  CAS  PubMed  Google Scholar 

  12. Di Francesco A, Di Germanio C, Bernier M, de Cabo R (2018) A time to fast. Science 362:770–775. https://doi.org/10.1126/science.aau2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popa-Wagner A, Dumitrascu DI, Capitanescu B, Petcu EB, Surugiu R, Fang WH, Dumbrava DA (2020) Dietary habits, lifestyle factors and neurodegenerative diseases. Neural Regen Res 15:394–400. https://doi.org/10.4103/1673-5374.266045

    Article  CAS  PubMed  Google Scholar 

  14. Amigo I, Kowaltowski AJ (2014) Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 2:296–304. https://doi.org/10.1016/j.redox.2013.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A (2020) Publisher correction: intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 21:445. https://doi.org/10.1038/s41583-020-0342-y

    Article  CAS  PubMed  Google Scholar 

  16. Zemel MB (2020) Modulation of energy sensing by leucine synergy with natural sirtuin activators: effects on health span. J Med Food 23:1129–1135. https://doi.org/10.1089/jmf.2020.0105

    Article  CAS  PubMed  Google Scholar 

  17. Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S, Mezzari MP, Petrosino JF, Opekun AR, Jung SY (2020) Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 217:103645. https://doi.org/10.1016/j.jprot.2020.103645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips MCL (2019) Fasting as a therapy in neurological disease. Nutrients. https://doi.org/10.3390/nu11102501

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Carvalho TS (2022) Calorie restriction or dietary restriction: how far they can protect the brain against neurodegenerative diseases? Neural Regen Res 17:1640–1644. https://doi.org/10.4103/1673-5374.332126

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gabande-Rodriguez E, Gomez de Las Heras MM, Mittelbrunn M (2019) Control of inflammation by calorie restriction mimetics: on the crossroad of autophagy and mitochondria. Cells. https://doi.org/10.3390/cells9010082

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fock KM, Khoo J (2013) Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol 28(Suppl 4):59–63. https://doi.org/10.1111/jgh.12407

    Article  CAS  PubMed  Google Scholar 

  22. Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, Wood RE, King NA, Byrne NM, Sainsbury A (2015) Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 418(Pt 2):153–172. https://doi.org/10.1016/j.mce.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  23. Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, Mosley M, Notterpek L, Ravussin E, Scheer FA, Seyfried TN, Varady KA, Panda S (2014) Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 111:16647–16653. https://doi.org/10.1073/pnas.1413965111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibrahim EM, Al-Foheidi MH, Al-Mansour MM (2020) Energy and caloric restriction, and fasting and cancer: a narrative review. Support Care Cancer. https://doi.org/10.1007/s00520-020-05879-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harris L, Hamilton S, Azevedo LB, Olajide J, De Brun C, Waller G, Whittaker V, Sharp T, Lean M, Hankey C, Ells L (2018) Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep 16:507–547. https://doi.org/10.11124/JBISRIR-2016-003248

    Article  PubMed  Google Scholar 

  26. Anton SD, Lee SA, Donahoo WT, McLaren C, Manini T, Leeuwenburgh C, Pahor M (2019) The effects of time restricted feeding on overweight, older adults: a pilot study. Nutrients. https://doi.org/10.3390/nu11071500

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mantis JG, Meidenbauer JJ, Zimick NC, Centeno NA, Seyfried TN (2014) Glucose reduces the anticonvulsant effects of the ketogenic diet in EL mice. Epilepsy Res 108:1137–1144. https://doi.org/10.1016/j.eplepsyres.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  28. Barrea L, Verde L, Vetrani C, Marino F, Aprano S, Savastano S, Colao A, Muscogiuri G (2022) VLCKD: a real time safety study in obesity. J Transl Med 20:23. https://doi.org/10.1186/s12967-021-03221-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, Romashkan S, Williamson DA, Meydani SN, Villareal DT, Smith SR, Stein RI, Scott TM, Stewart TM, Saltzman E, Klein S, Bhapkar M, Martin CK, Gilhooly CH, Holloszy JO, Hadley EC, Roberts SB, Group C S (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70:1097–1104. https://doi.org/10.1093/gerona/glv057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barry D, Ellul S, Watters L, Lee D, Haluska R Jr, White R (2018) The ketogenic diet in disease and development. Int J Dev Neurosci 68:53–58. https://doi.org/10.1016/j.ijdevneu.2018.04.005

    Article  PubMed  Google Scholar 

  31. Freeman JM, Vining EP (1999) Seizures decrease rapidly after fasting: preliminary studies of the ketogenic diet. Arch Pediatr Adolesc Med 153:946–949. https://doi.org/10.1001/archpedi.153.9.946

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Shan W, Zhu F, Wu J, Wang Q (2019) Ketone bodies in neurological diseases: focus on neuroprotection and underlying mechanisms. Front Neurol 10:585. https://doi.org/10.3389/fneur.2019.00585

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bergqvist AG, Schall JI, Gallagher PR, Cnaan A, Stallings VA (2005) Fasting versus gradual initiation of the ketogenic diet: a prospective, randomized clinical trial of efficacy. Epilepsia 46:1810–1819. https://doi.org/10.1111/j.1528-1167.2005.00282.x

    Article  CAS  PubMed  Google Scholar 

  34. Kim DW, Kang HC, Park JC, Kim HD (2004) Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet. Pediatrics 114:1627–1630. https://doi.org/10.1542/peds.2004-1001

    Article  PubMed  Google Scholar 

  35. Prabhakar A, Quach A, Zhang H, Terrera M, Jackemeyer D, Xian X, Tsow F, Tao N, Forzani ES (2015) Acetone as biomarker for ketosis buildup capability—a study in healthy individuals under combined high fat and starvation diets. Nutr J 14:41. https://doi.org/10.1186/s12937-015-0028-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang HC, Lee YJ, Lee JS, Lee EJ, Eom S, You SJ, Kim HD (2011) Comparison of short- versus long-term ketogenic diet for intractable infantile spasms. Epilepsia 52:781–787. https://doi.org/10.1111/j.1528-1167.2010.02940.x

    Article  PubMed  Google Scholar 

  37. Greene AE, Todorova MT, McGowan R, Seyfried TN (2001) Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 42:1371–1378. https://doi.org/10.1046/j.1528-1157.2001.17601.x

    Article  CAS  PubMed  Google Scholar 

  38. Raffo E, François J, Ferrandon A, Koning E, Nehlig A (2008) Calorie-restricted ketogenic diet increases thresholds to all patterns of pentylenetetrazol-induced seizures: critical importance of electroclinical assessment. Epilepsia 49:320–328. https://doi.org/10.1111/j.1528-1167.2007.01380.x

    Article  CAS  PubMed  Google Scholar 

  39. Courchesne-Loyer A, Croteau E, Castellano CA, St-Pierre V, Hennebelle M, Cunnane SC (2017) Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: a dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab 37:2485–2493. https://doi.org/10.1177/0271678X16669366

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Kuang Y, Xu K, Harris D, Lee Z, LaManna J, Puchowicz MA (2013) Ketosis proportionately spares glucose utilization in brain. J Cereb Blood Flow Metab 33:1307–1311. https://doi.org/10.1038/jcbfm.2013.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P (2015) Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 356:289–300. https://doi.org/10.1016/j.canlet.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  42. Yu JL, Li C, Che LH, Zhao YH, Guo YB (2019) Downregulation of long noncoding RNA H19 rescues hippocampal neurons from apoptosis and oxidative stress by inhibiting IGF2 methylation in mice with streptozotocin-induced diabetes mellitus. J Cell Physiol 234:10655–10670. https://doi.org/10.1002/jcp.27746

    Article  CAS  PubMed  Google Scholar 

  43. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235. https://doi.org/10.1002/ana.20899

    Article  CAS  PubMed  Google Scholar 

  44. Varendi K, Airavaara M, Anttila J, Vose S, Planken A, Saarma M, Mitchell JR, Andressoo JO (2014) Short-term preoperative dietary restriction is neuroprotective in a rat focal stroke model. PLoS ONE 9:e93911. https://doi.org/10.1371/journal.pone.0093911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Carvalho TS, Sanchez-Mendoza EH, Schultz Moreira AR, Nascentes Melo LM, Wang C, Sardari M, Hagemann N, Doeppner TR, Kleinschnitz C, Hermann DM (2020) Hypocaloric diet initiated post-ischemia provides long-term neuroprotection and promotes peri-infarct brain remodeling by regulating metabolic and survival-promoting proteins. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02207-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bloemer J, Pinky PD, Govindarajulu M, Hong H, Judd R, Amin RH, Moore T, Dhanasekaran M, Reed MN, Suppiramaniam V (2018) Role of adiponectin in central nervous system disorders. Neural Plast 2018:4593530. https://doi.org/10.1155/2018/4593530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, Wang H, Pi C, Shi Y, He X (2020) Metabolism: a novel shared link between diabetes mellitus and Alzheimer’s disease. J Diabetes Res 2020:4981814. https://doi.org/10.1155/2020/4981814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kellar D, Craft S (2020) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19:758–766. https://doi.org/10.1016/S1474-4422(20)30231-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma L, Wang R, Dong W, Zhao Z (2018) Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway. Exp Gerontol 102:28–35. https://doi.org/10.1016/j.exger.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  50. Kim H, Kang H, Heo RW, Jeon BT, Yi CO, Shin HJ, Kim J, Jeong SY, Kwak W, Kim WH, Kang SS, Roh GS (2016) Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice. J Cereb Blood Flow Metab 36:1098–1110. https://doi.org/10.1177/0271678X15606724

    Article  CAS  PubMed  Google Scholar 

  51. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61. https://doi.org/10.1186/s13148-016-0224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A (2020) Will sirtuins be promising therapeutic targets for TBI and associated neurodegenerative diseases? Front Neurosci 14:791. https://doi.org/10.3389/fnins.2020.00791

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schertzer JD, Lam TKT (2021) Peripheral and central regulation of insulin by the intestine and microbiome. Am J Physiol Endocrinol Metab 320:E234–E239. https://doi.org/10.1152/ajpendo.00547.2020

    Article  CAS  PubMed  Google Scholar 

  54. Ryan AS, Li G, Hafer-Macko C, Ivey FM (2017) Resistive training and molecular regulators of vascular-metabolic risk in chronic stroke. J Stroke Cerebrovasc Dis 26:962–968. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.003

    Article  PubMed  Google Scholar 

  55. Ran M, Li Z, Yang L, Tong L, Zhang L, Dong H (2015) Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res 1610:61–68. https://doi.org/10.1016/j.brainres.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  56. Ma L, Dong W, Wang R, Li Y, Xu B, Zhang J, Zhao Z, Wang Y (2015) Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain Res Bull 116:67–72. https://doi.org/10.1016/j.brainresbull.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  57. Pallauf K, Gunther I, Kuhn G, Chin D, de Pascual-Teresa S, Rimbach G (2020) The potential of resveratrol to act as a caloric restriction mimetic appears to be limited: insights from studies in mice. Adv Nutr. https://doi.org/10.1093/advances/nmaa148

    Article  PubMed Central  Google Scholar 

  58. Shen H, Gu X, Wei ZZ, Wu A, Liu X, Wei L (2020) Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice. Exp Neurol 337:113542. https://doi.org/10.1016/j.expneurol.2020.113542

    Article  CAS  PubMed  Google Scholar 

  59. Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shirzad S, Ghazavi H, Mahdavizadeh V (2020) Insulin-like growth factor 2 (IGF-2) regulates neuronal density and IGF-2 distribution following hippocampal intracerebral hemorrhage. J Stroke Cerebrovasc Dis 29:105128. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105128

    Article  PubMed  Google Scholar 

  60. Zhang J, Zhang W, Gao X, Zhao Y, Chen D, Xu N, Pu H, Stetler RA, Gao Y (2019) Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. J Cereb Blood Flow Metab 39:1394–1409. https://doi.org/10.1177/0271678X18785480

    Article  PubMed  Google Scholar 

  61. Thundyil J, Pavlovski D, Sobey CG, Arumugam TV (2012) Adiponectin receptor signalling in the brain. Br J Pharmacol 165:313–327. https://doi.org/10.1111/j.1476-5381.2011.01560.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J (2014) Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 115:6–24. https://doi.org/10.1016/j.pneurobio.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  63. Witte AV, Kerti L, Margulies DS, Floel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34:7862–7870. https://doi.org/10.1523/JNEUROSCI.0385-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Breuss JM, Atanasov AG, Uhrin P (2019) Resveratrol and its effects on the vascular system. Int J Mol Sci. https://doi.org/10.3390/ijms20071523

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malaguarnera L (2019) Influence of resveratrol on the immune response. Nutrients. https://doi.org/10.3390/nu11050946

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schoffen JP, Santi Rampazzo AP, Cirilo CP, Zapater MC, Vicentini FA, Comar JF, Bracht A, Natali MR (2014) Food restriction enhances oxidative status in aging rats with neuroprotective effects on myenteric neuron populations in the proximal colon. Exp Gerontol 51:54–64. https://doi.org/10.1016/j.exger.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  67. De Angelis F, Vacca V, Pavone F, Marinelli S (2020) Impact of caloric restriction on peripheral nerve injury-induced neuropathic pain during ageing in mice. Eur J Pain (London, England) 24:374–382. https://doi.org/10.1002/ejp.1493

    Article  CAS  Google Scholar 

  68. Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67:41–52. https://doi.org/10.1002/ana.21798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu ZF, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res 57:830–839

    Article  CAS  PubMed  Google Scholar 

  70. Ciobanu O, Elena Sandu R, Tudor Balseanu A, Zavaleanu A, Gresita A, Petcu EB, Uzoni A, Popa-Wagner A (2017) Caloric restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell 16:1394–1403. https://doi.org/10.1111/acel.12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonaventura A, Liberale L, Vecchie A, Casula M, Carbone F, Dallegri F, Montecucco F (2016) Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci. https://doi.org/10.3390/ijms17121967

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fitzgerald KC, Vizthum D, Henry-Barron B, Schweitzer A, Cassard SD, Kossoff E, Hartman AL, Kapogiannis D, Sullivan P, Baer DJ, Mattson MP, Appel LJ, Mowry EM (2018) Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord 23:33–39. https://doi.org/10.1016/j.msard.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, Zhou Y, Piccio L (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27:1222-1235.e1226. https://doi.org/10.1016/j.cmet.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sramkova V, Rossmeislova L, Krauzova E, Kracmerova J, Koc M, Langin D, Stich V, Siklova M (2016) Comparison of early (2 days) and later (28 days) response of adipose tissue to very low-calorie diet in obese women. J Clin Endocrinol Metab 101:5021–5029. https://doi.org/10.1210/jc.2016-2161

    Article  CAS  PubMed  Google Scholar 

  75. Kim Y, Kwon OK, Chae S, Jung HJ, Ahn S, Jeon JM, Sung E, Kim S, Ki SH, Chung KW, Chung HY, Jung YS, Hwang DH, Lee S (2018) Quantitative proteomic analysis of changes related to age and calorie restriction in rat liver tissue. Proteomics 18:e1700240. https://doi.org/10.1002/pmic.201700240

    Article  CAS  PubMed  Google Scholar 

  76. Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ (2017) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26:672–685. https://doi.org/10.1016/j.cmet.2017.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen Y, Kapfhamer D, Minnella AM, Kim JE, Won SJ, Chen Y, Huang Y, Low LH, Massa SM, Swanson RA (2017) Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun 8:624. https://doi.org/10.1038/s41467-017-00707-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Imayama I, Ulrich CM, Alfano CM, Wang C, Xiao L, Wener MH, Campbell KL, Duggan C, Foster-Schubert KE, Kong A, Mason CE, Wang CY, Blackburn GL, Bain CE, Thompson HJ, McTiernan A (2012) Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res 72:2314–2326. https://doi.org/10.1158/0008-5472.CAN-11-3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shruthi K, Reddy SS, Reddy PY, Shivalingam P, Harishankar N, Reddy GB (2016) Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem 33:73–81. https://doi.org/10.1016/j.jnutbio.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  80. Kim C, Pinto AM, Bordoli C, Buckner LP, Kaplan PC, Del Arenal IM, Jeffcock EJ, Hall WL, Thuret S (2020) Energy restriction enhances adult hippocampal neurogenesis-associated memory after four weeks in an adult human population with central obesity; a randomized controlled trial. Nutrients. https://doi.org/10.3390/nu12030638

    Article  PubMed  PubMed Central  Google Scholar 

  81. Solianik R, Sujeta A, Cekanauskaite A (2018) Effects of 2-day calorie restriction on cardiovascular autonomic response, mood, and cognitive and motor functions in obese young adult women. Exp Brain Res 236:2299–2308. https://doi.org/10.1007/s00221-018-5305-4

    Article  PubMed  Google Scholar 

  82. Prehn K, Jumpertz von Schwartzenberg R, Mai K, Zeitz U, Witte AV, Hampel D, Szela AM, Fabian S, Grittner U, Spranger J, Floel A (2017) Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex 27:1765–1778. https://doi.org/10.1093/cercor/bhw008

    Article  PubMed  Google Scholar 

  83. Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, Kjellkvist E, Berggren E, Lundberg I, Bergqvist I, Ericsson M, Eriksson B, Linde K, Westman J, Edlund T, Edlund H (2018) PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. https://doi.org/10.1172/jci.insight.99114

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vega-Martin E, Gonzalez-Blazquez R, Manzano-Lista FJ, Martin-Ramos M, Garcia-Prieto CF, Viana M, Rubio MA, Calle-Pascual AL, Lionetti L, Somoza B, Fernandez-Alfonso MS, Alcala M, Gil-Ortega M (2020) Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J Nutr Biochem 78:108342. https://doi.org/10.1016/j.jnutbio.2020.108342

    Article  CAS  PubMed  Google Scholar 

  85. Bayliss JA, Lemus MB, Stark R, Santos VV, Thompson A, Rees DJ, Galic S, Elsworth JD, Kemp BE, Davies JS, Andrews ZB (2016) Ghrelin-AMPK signaling mediates the neuroprotective effects of calorie restriction in Parkinson’s disease. J Neurosci 36:3049–3063. https://doi.org/10.1523/JNEUROSCI.4373-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lalo U, Bogdanov A, Moss GW, Pankratov Y (2020) Astroglia-derived BDNF and MSK-1 mediate experience- and diet-dependent synaptic plasticity. Brain Sci. https://doi.org/10.3390/brainsci10070462

    Article  PubMed  PubMed Central  Google Scholar 

  87. Teng LL, Lu GL, Chiou LC, Lin WS, Cheng YY, Hsueh TE, Huang YC, Hwang NH, Yeh JW, Liao RM, Fan SZ, Yen JH, Fu TF, Tsai TF, Wu MS, Wang PY (2019) Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement. PLoS Biol 17:e2007097. https://doi.org/10.1371/journal.pbio.2007097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jordan S, Tung N, Casanova-Acebes M, Chang C, Cantoni C, Zhang D, Wirtz TH, Naik S, Rose SA, Brocker CN, Gainullina A, Hornburg D, Horng S, Maier BB, Cravedi P, LeRoith D, Gonzalez FJ, Meissner F, Ochando J, Rahman A, Chipuk JE, Artyomov MN, Frenette PS, Piccio L, Berres ML, Gallagher EJ, Merad M (2019) Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178:1102-1114. e1117. https://doi.org/10.1016/j.cell.2019.07.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bai M, Wang Y, Han R, Xu L, Huang M, Zhao J, Lin Y, Song S, Chen Y (2021) Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J Nutr Biochem 87:108493. https://doi.org/10.1016/j.jnutbio.2020.108493

    Article  CAS  PubMed  Google Scholar 

  90. Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S, Suarez J, Michalsen A, Cross AH, Morgan TE, Wei M, Paul F, Bock M, Longo VD (2016) A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 15:2136–2146. https://doi.org/10.1016/j.celrep.2016.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Flanagan CH, Smith LA, McDonell SB, Hursting SD (2017) When less may be more: calorie restriction and response to cancer therapy. BMC Med 15:106. https://doi.org/10.1186/s12916-017-0873-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN (2008) Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer 7:37. https://doi.org/10.1186/1476-4598-7-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Coccurello R, Nazio F, Rossi C, De Angelis F, Vacca V, Giacovazzo G, Procacci P, Magnaghi V, Ciavardelli D, Marinelli S (2018) Effects of caloric restriction on neuropathic pain, peripheral nerve degeneration and inflammation in normometabolic and autophagy defective prediabetic Ambra1 mice. PLoS ONE 13:e0208596. https://doi.org/10.1371/journal.pone.0208596

    Article  PubMed  PubMed Central  Google Scholar 

  94. Szkudelski T, Szkudelska K (2019) The relevance of AMP-activated protein kinase in insulin-secreting beta cells: a potential target for improving beta cell function? J Physiol Biochem 75:423–432. https://doi.org/10.1007/s13105-019-00706-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao M, Li XW, Chen Z, Hao F, Tao SX, Yu HY, Cheng R, Liu H (2019) Neuro-protective role of metformin in patients with acute stroke and type 2 diabetes mellitus via AMPK/mammalian target of rapamycin (mTOR) signaling pathway and oxidative stress. Med Sci Monit 25:2186–2194. https://doi.org/10.12659/MSM.911250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Deretic V (2021) Autophagy in inflammation, infection, and immunometabolism. Immunity 54:437–453. https://doi.org/10.1016/j.immuni.2021.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Loos B, Klionsky DJ, Wong E (2017) Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 156:90–106. https://doi.org/10.1016/j.pneurobio.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  98. Bagherniya M, Butler AE, Barreto GE, Sahebkar A (2018) The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Res Rev 47:183–197. https://doi.org/10.1016/j.arr.2018.08.004

    Article  PubMed  Google Scholar 

  99. Bronson RT, Lipman RD, Harrison DE (1993) Age-related gliosis in the white matter of mice. Brain Res 609:124–128. https://doi.org/10.1016/0006-8993(93)90864-j

    Article  CAS  PubMed  Google Scholar 

  100. Liu Q, Li H, Wang J, Zhong L, Chen X, Zhang R, Wang H (2020) Glucose restriction delays senescence and promotes proliferation of HUVECs via the AMPK/SIRT1-FOXA3-Beclin1 pathway. Exp Gerontol 139:111053. https://doi.org/10.1016/j.exger.2020.111053

    Article  CAS  PubMed  Google Scholar 

  101. Liu Y, Wang R, Zhao Z, Dong W, Zhang X, Chen X, Ma L (2017) Short-term caloric restriction exerts neuroprotective effects following mild traumatic brain injury by promoting autophagy and inhibiting astrocyte activation. Behav Brain Res 331:135–142. https://doi.org/10.1016/j.bbr.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  102. Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, Matsubara T, Tomita T, Ando T, Hasegawa K, Murayama S, Yoshida M, Hasegawa M, Scheres SHW, Goedert M (2020) Structures of alpha-synuclein filaments from multiple system atrophy. Nature 585:464–469. https://doi.org/10.1038/s41586-020-2317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sampaio-Marques B, Pereira H, Santos AR, Teixeira A, Ludovico P (2018) Caloric restriction rescues yeast cells from alpha-synuclein toxicity through autophagic control of proteostasis. Aging (Albany NY) 10:3821–3833. https://doi.org/10.18632/aging.101675

    Article  CAS  PubMed  Google Scholar 

  104. Guedes A, Ludovico P, Sampaio-Marques B (2017) Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mech Ageing Dev 161:270–276. https://doi.org/10.1016/j.mad.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  105. Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, Jiang K, Liu R, Guo Z, Deeney J, Apovian CM, Snyder-Cappione J, Hawk GS, Fleeman RM, Pihl RMF, Thompson K, Belkina AC, Cui L, Proctor EA, Kern PA, Nikolajczyk BS (2020) Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 32:44-55 e46. https://doi.org/10.1016/j.cmet.2020.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang X, Zhou Y, Tang D, Zhu Z, Li Y, Huang T, Muller R, Yu W, Li P (2019) ACC1 (Acetyl Coenzyme A Carboxylase 1) is a potential immune modulatory target of cerebral ischemic stroke. Stroke 50:1869–1878. https://doi.org/10.1161/STROKEAHA.119.024564

    Article  CAS  PubMed  Google Scholar 

  107. Hoxha M, Spahiu E, Prendi E, Zappacosta B (2022) A Systematic review on the role of arachidonic acid pathway in multiple sclerosis. CNS Neurol Disord Drug Targets 21:160–187. https://doi.org/10.2174/1871527319666200825164123

    Article  CAS  PubMed  Google Scholar 

  108. Bock M, Karber M, Kuhn H (2018) Ketogenic diets attenuate cyclooxygenase and lipoxygenase gene expression in multiple sclerosis. EBioMedicine 36:293–303. https://doi.org/10.1016/j.ebiom.2018.08.057

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang L, Xue X, Zhai R, Yang X, Li H, Zhao L, Zhang C (2019) Timing of calorie restriction in mice impacts host metabolic phenotype with correlative changes in gut microbiota. mSystems. https://doi.org/10.1128/mSystems.00348-19

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pero RW, Roush GC, Markowitz MM, Miller DG (1990) Oxidative stress, DNA repair, and cancer susceptibility. Cancer Detect Prev 14:555–561

    CAS  PubMed  Google Scholar 

  111. Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017) Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 24:76. https://doi.org/10.1186/s12929-017-0379-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gorni D, Finco A (2020) Oxidative stress in elderly population: a prevention screening study. Aging Med (Milton) 3:205–213. https://doi.org/10.1002/agm2.12121

    Article  PubMed  Google Scholar 

  113. Peng JJ, Lin SH, Liu YT, Lin HC, Li TN, Yao CK (2019) A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. Elife. https://doi.org/10.7554/eLife.47372

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jung HY, Kwon HJ, Kim W, Hwang IK, Choi GM, Chang IB, Kim DW, Moon SM (2021) Tat-endophilin A1 fusion protein protects neurons from ischemic damage in the gerbil hippocampus: a possible mechanism of lipid peroxidation and neuroinflammation mitigation as well as synaptic plasticity. Cells. https://doi.org/10.3390/cells10020357

    Article  PubMed  PubMed Central  Google Scholar 

  115. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kowaltowski AJ (2011) Caloric restriction and redox state: does this diet increase or decrease oxidant production? Redox Rep 16:237–241. https://doi.org/10.1179/1351000211Y.0000000014

    Article  CAS  PubMed  Google Scholar 

  117. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen III HR, Dasari S, Walrand S, Short KR, Johnson ML, Robinson MM, Schimke JM, Jakaitis DR, Asmann YW, Sun Z, Nair KS (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788. https://doi.org/10.1016/j.cmet.2012.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu Y, Cheng A, Li YJ, Yang Y, Kishimoto Y, Zhang S, Wang Y, Wan R, Raefsky SM, Lu D, Saito T, Saido T, Zhu J, Wu LJ, Mattson MP (2019) SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun 10:1886. https://doi.org/10.1038/s41467-019-09897-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mauro CR, Tao M, Yu P, Treviño-Villerreal JH, Longchamp A, Kristal BS, Ozaki CK, Mitchell JR (2016) Preoperative dietary restriction reduces intimal hyperplasia and protects from ischemia-reperfusion injury. J Vasc Surg 63:500-509.e501. https://doi.org/10.1016/j.jvs.2014.07.004

    Article  PubMed  Google Scholar 

  120. Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373. https://doi.org/10.1161/01.ATV.0000133604.20182.cf

    Article  CAS  PubMed  Google Scholar 

  121. Garcia-Prieto CF, Gil-Ortega M, Plaza A, Manzano-Lista FJ, Gonzalez-Blazquez R, Alcala M, Rodriguez-Rodriguez P, Viana M, Aranguez I, Gollasch M, Somoza B, Fernandez-Alfonso MS (2019) Caloric restriction induces H2O2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: role for CAMKII. Free Radic Biol Med 139:35–45. https://doi.org/10.1016/j.freeradbiomed.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  122. Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD (2019) Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front Pharmacol 10:33. https://doi.org/10.3389/fphar.2019.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6:55. https://doi.org/10.1186/s40168-018-0439-y

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sowah SA, Riedl L, Damms-Machado A, Johnson TS, Schubel R, Graf M, Kartal E, Zeller G, Schwingshackl L, Stangl GI, Kaaks R, Kuhn T (2019) Effects of weight-loss interventions on short-chain fatty acid concentrations in blood and feces of adults: a systematic review. Adv Nutr 10:673–684. https://doi.org/10.1093/advances/nmy125

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Natural Science Foundation of China (Grant Number: 81974206) and the National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Project for Major Diseases of Xiangya Hospital, Central South University (z027001).

Author information

Authors and Affiliations

Authors

Contributions

BZ, RH and YH collected the literature material; BZ, SX, JL and LW prepared the picture and revised the manuscript; ZL designed the outline and revised the manuscript; BX provided financial support. All the authors have approved of the publication of the manuscript.

Corresponding author

Correspondence to Zhaohui Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Huang, R., Xu, S. et al. Dietary energy restriction in neurological diseases: what’s new?. Eur J Nutr 62, 573–588 (2023). https://doi.org/10.1007/s00394-022-03036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-03036-1

Keywords

Navigation