Skip to main content

Advertisement

Log in

Associations between serum concentration of flavonoids and breast cancer risk among Chinese women

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

In vitro and in vivo studies suggested that flavonols, flavones, flavanones and flavan-3-ols have preventive effects on breast carcinogenesis. Epidemiological evidence about the associations between these flavonoid biomarkers and breast cancer risk is limited. This study aimed to investigate the association between serum concentration of these flavonoids and breast cancer risk among Chinese women.

Methods

This hospital-based case–control study recruited 792 breast cancer cases and 813 age frequency-matched (5-year interval) controls who provided eligible blood samples in Guangdong Province, China. Ultra-high-performance liquid chromatography–tandem mass spectrometry was used to measure flavonoids. Unconditional logistic regression was used to estimate the odds ratio (OR) and 95% confidence internal (CI).

Results

Higher concentrations of serum flavonols, isorhamnetin, kaempferol, flavanones and naringenin were significantly associated with lower breast cancer risk, with adjusted ORs (95% CIs) for the highest versus the lowest group of 0.66 (0.49–0.89) for flavonols, 0.52 (0.38–0.70) for isorhamnetin, 0.60 (0.45–0.80) for kaempferol, 0.65 (0.49–0.87) for flavanones and 0.45 (0.34–0.60) for naringenin, respectively. Significant positive associations were observed between serum flavan-3-ols, epigallocatechin, epigallocatechin-3-gallate and breast cancer risk. No significant associations were observed for serum quercetin, flavones, apigenin, luteolin, hesperetin, catechin, epicatechin and epicatechin-3-gallate with overall breast cancer risk.

Conclusions

This study suggested that serum flavonols and flavanones were inversely associated with breast cancer risk and serum flavan-3-ols were positively associated with breast cancer risk. Serum flavones were not associated with overall breast cancer risk. These findings warrant further confirmation in prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beecher GR (3254S) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254S. https://doi.org/10.1093/jn/133.10.3248S

    Article  CAS  PubMed  Google Scholar 

  2. Zamora-Ros R, Knaze V, Luján-Barroso L et al (2011) Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort. Br J Nutr 106:1915–1925. https://doi.org/10.1017/S000711451100239X

    Article  CAS  PubMed  Google Scholar 

  3. Feng XL, Ho SC, Mo XF et al (2019) Association between flavonoids, flavonoid subclasses intake and breast cancer risk: a case-control study in China. Eur J Cancer Prev. https://doi.org/10.1097/CEJ.0000000000000561

    Article  Google Scholar 

  4. Sak K (2014) Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 8:122–146. https://doi.org/10.4103/0973-7847.134247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu J, Zhang H, Zhu Z et al (2015) Effects and mechanism of flavonoids from Astragalus complanatus on breast cancer growth. Naunyn Schmiedebergs Arch Pharmacol 388:965–972. https://doi.org/10.1007/s00210-015-1127-0

    Article  CAS  PubMed  Google Scholar 

  6. Raffa D, Maggio B, Raimondi MV et al (2017) Recent discoveries of anticancer flavonoids. Eur J Med Chem 142:213–228. https://doi.org/10.1016/j.ejmech.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  7. Magne NC, Zingue S, Winter E et al (2015) Flavonoids, breast cancer chemopreventive and/or chemotherapeutic agents. Curr Med Chem 22:3434–3446. https://doi.org/10.2174/0929867322666150729115321

    Article  CAS  Google Scholar 

  8. Hui C, Qi X, Qianyong Z et al (2013) Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS ONE 8:e54318. https://doi.org/10.1371/journal.pone.0054318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sak K (2017) Epidemiological evidences on dietary flavonoids and breast cancer risk: a narrative review. Asian Pac J Cancer Prev 18:2309–2328. https://doi.org/10.22034/APJCP.2017.18.9.2309

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fink BN, Steck SE, Wolff MS et al (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165:514–523. https://doi.org/10.1093/aje/kwk033

    Article  PubMed  Google Scholar 

  11. Peterson J, Lagiou P, Samoli E et al (2003) Flavonoid intake and breast cancer risk: a case–control study in Greece. Br J Cancer 89:1255–1259. https://doi.org/10.1038/sj.bjc.6601271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bosetti C, Spertini L, Parpinel M et al (2005) Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomark Prev 14:805–808. https://doi.org/10.1158/1055-9965.EPI-04-0838

    Article  CAS  Google Scholar 

  13. Zamora-Ros R, Ferrari P, Gonzalez CA et al (2013) Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Breast Cancer Res Treat 139:163–176. https://doi.org/10.1007/s10549-013-2483-4

    Article  CAS  PubMed  Google Scholar 

  14. Cutler GJ, Nettleton JA, Ross JA et al (2008) Dietary flavonoid intake and risk of cancer in postmenopausal women: the Iowa Women's Health Study. Int J Cancer 123:664–671. https://doi.org/10.1002/ijc.23564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adebamowo CA, Cho E, Sampson L et al (2005) Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer 114:628–633. https://doi.org/10.1002/ijc.20741

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Gapstur SM, Gaudet MM et al (2014) Evidence for an association of dietary flavonoid intake with breast cancer risk by estrogen receptor status is limited. J Nutr 144:1603–1611. https://doi.org/10.3945/jn.114.196964

    Article  CAS  PubMed  Google Scholar 

  17. Spencer JP, Abd EMM, Minihane AM et al (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22. https://doi.org/10.1017/S0007114507798938

    Article  CAS  PubMed  Google Scholar 

  18. Thilakarathna SH, Rupasinghe HP (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387. https://doi.org/10.3390/nu5093367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iwasaki M, Inoue M, Sasazuki S et al (2010) Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: a nested case-control study. Breast Cancer Res Treat 124:827–834. https://doi.org/10.1007/s10549-010-0916-x

    Article  CAS  PubMed  Google Scholar 

  20. Luo J, Gao YT, Chow WH et al (2010) Urinary polyphenols and breast cancer risk: results from the Shanghai Women's Health Study. Breast Cancer Res Treat 120:693–702. https://doi.org/10.1007/s10549-009-0487-x

    Article  CAS  PubMed  Google Scholar 

  21. Dai Q, Franke AA, Jin F et al (2002) Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomark Prev 11:815–821

    CAS  Google Scholar 

  22. Zhang CX, Ho SC (2009) Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18:240–250

    CAS  PubMed  Google Scholar 

  23. Yang YX, Wang GY, Pan XC (2002) China food composition. Peking University Medical Press, Beijing

    Google Scholar 

  24. Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  25. Ainsworth BE, Haskell WL, Whitt MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32:S498–504. https://doi.org/10.1097/00005768-200009001-00009

    Article  CAS  PubMed  Google Scholar 

  26. Yu XA, Azietaku JT, Li J et al (2017) Simultaneous determination of eight flavonoids in plasma using LC-MS/MS and application to a pharmacokinetic study after oral administration of Pollen Typhae extract to rats. J Chromatogr B Analyt Technol Biomed Life Sci 1044–1045:158–165. https://doi.org/10.1016/j.jchromb.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  27. Harrell F (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Book  Google Scholar 

  28. Selvakumar P, Badgeley A, Murphy P et al (2020) Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients. https://doi.org/10.3390/nu12030761

    Article  PubMed  PubMed Central  Google Scholar 

  29. Touvier M, Druesne-Pecollo N, Kesse-Guyot E et al (2013) Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat 137:225–236. https://doi.org/10.1007/s10549-012-2323-y

    Article  PubMed  Google Scholar 

  30. Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72. https://doi.org/10.1016/j.abb.2010.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang CS, Wang H, Li GX et al (2011) Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res 64:113–122. https://doi.org/10.1016/j.phrs.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  32. Najaf NM, Salehi M, Ghazanfarpour M et al (2018) The association between green tea consumption and breast cancer risk: a systematic review and meta-analysis. Phytother Res 32:1855–1864. https://doi.org/10.1002/ptr.6124

    Article  Google Scholar 

  33. Shrubsole MJ, Lu W, Chen Z et al (2009) Drinking green tea modestly reduces breast cancer risk. J Nutr 139:310–316. https://doi.org/10.3945/jn.108.098699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu AH, Yu MC, Tseng CC et al (2003) Green tea and risk of breast cancer in Asian Americans. Int J Cancer 106:574–579. https://doi.org/10.1002/ijc.11259

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, Holman CD, Huang JP et al (2007) Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 28:1074–1078. https://doi.org/10.1093/carcin/bgl252

    Article  CAS  PubMed  Google Scholar 

  36. Oh JK, Sandin S, Strom P et al (2015) Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int J Cancer 137:1979–1989. https://doi.org/10.1002/ijc.29569

    Article  CAS  PubMed  Google Scholar 

  37. Bhagwat S, Haytowitz DB (2015) USDA database for the flavonoid content of selected foods release 3.2. USDA, Beltsville. www.ars.usda.gov

  38. Zhang HW, Hu JJ, Fu RQ et al (2018) Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep 8:11255. https://doi.org/10.1038/s41598-018-29308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanno S, Tomizawa A, Hiura T et al (2005) Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol Pharm Bull 28:527–530. https://doi.org/10.1248/bpb.28.527

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Wolfram J, Boom K et al (2013) Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct 31:374–379. https://doi.org/10.1002/cbf.2905

    Article  CAS  PubMed  Google Scholar 

  41. Palit S, Kar S, Sharma G et al (2015) Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol 230:1729–1739. https://doi.org/10.1002/jcp.24818

    Article  CAS  PubMed  Google Scholar 

  42. Manach C, Donovan JL (2004) Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 38:771–785. https://doi.org/10.1080/10715760410001727858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of the study participants; without them the study would not have been possible. We also appreciated Miss Alinuer Abulimiti and Miss Chu-Yi Huang for participating in the laboratory measurement.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81102188). The funders had no role in the design of the study, analysis of the data, or writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Xia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, XL., Zhan, XX., Zuo, LSY. et al. Associations between serum concentration of flavonoids and breast cancer risk among Chinese women. Eur J Nutr 60, 1347–1362 (2021). https://doi.org/10.1007/s00394-020-02331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02331-z

Keywords

Navigation