Skip to main content

Advertisement

Log in

A combination of scGOS/lcFOS with Bifidobacterium breve M-16V protects suckling rats from rotavirus gastroenteritis

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Rotavirus (RV) is the leading cause of severe diarrhoea among infants and young children, and although more standardized studies are needed, there is evidence that probiotics can help to fight against RV and other infectious and intestinal pathologies. On the other hand, the effects of prebiotics have not been properly addressed in the context of an RV infection. The aim of this study was to demonstrate a protective role for a specific scGOS/lcFOS 9:1 prebiotic mixture (PRE) separately, the probiotic Bifidobacterium breve M-16V (PRO) separately and the combination of the prebiotic mixture and the probiotic (synbiotic, SYN) in a suckling rat RV infection model.

Methods

The animals received the intervention from the 3rd to the 21st day of life by oral gavage. On day 7, RV was orally administered. Clinical parameters and immune response were evaluated.

Results

The intervention with the PRO reduced the incidence, severity and duration of the diarrhoea (p < 0.05). The PRE and SYN products improved clinical parameters as well, but a change in stool consistency induced by the PRE intervention hindered the observation of this effect. Both the PRE and the SYN, but not the PRO, significantly reduced viral shedding. All interventions modulated the specific antibody response in serum and intestinal washes at day 14 and 21 of life.

Conclusions

A daily supplement of a scGOS/lcFOS 9:1 prebiotic mixture, Bifidobacterium breve M-16V or a combination of both is highly effective in modulating RV-induced diarrhoea in this preclinical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parashar UD, Hummelman EG, Bresee JS et al (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9:565–572. doi:10.3201/eid0905.020562

    Article  Google Scholar 

  2. Greenberg HB, Estes MK (2009) Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136:1939–1951. doi:10.1053/j.gastro.2009.02.076

    Article  CAS  Google Scholar 

  3. Clarke E, Desselberger U (2015) Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol 8:1–17. doi:10.1038/mi.2014.114

    Article  CAS  Google Scholar 

  4. Riechmann ER, Cilleruelo ML, Rivero MJ (2006) Infección por rotavirus en España. In: Riechmann ER (ed) Infección por rotavirus. Undergraf S.L, Madrid, pp 67–75

    Google Scholar 

  5. Tate JE, Burton AH, Boschi-Pinto C et al (2012) 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 12:136–141. doi:10.1016/S1473-3099(11)70253-5

    Article  Google Scholar 

  6. Bines JE, Kirkwood CD (2015) Conquering rotavirus: from discovery to global vaccine implementation. J Paediatr Child Health 51:34–39. doi:10.1111/jpc.12815

    Article  Google Scholar 

  7. Rigo-Adrover M, Franch À, Castell M et al (2014) Whey protein is beneficial for rotavirus-induced diarrhoea in preclinical studies. In: Preedy VR, Watson RR, Zibadi S (eds) Handbook of dietary and nutritional aspects of bottle feeding. Wageningen Academic Publishers, Wageningen, pp 491–506

    Chapter  Google Scholar 

  8. Monedero V, Rodríguez-Díaz J, Viana R et al (2004) Selection of single-chain antibodies against the VP8* subunit of rotavirus VP4 outer capsid protein and their expression in Lactobacillus casei. Appl Environ Microbiol 70:6936–6939. doi:10.1128/AEM.70.11.6936-6939.2004

    Article  CAS  Google Scholar 

  9. Maragkoudakis PA, Chingwaru W, Gradisnik L et al (2010) Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int J Food Microbiol 141:91–97. doi:10.1016/j.ijfoodmicro.2009.12.024

    Article  Google Scholar 

  10. Varyukhina S, Freitas M, Bardin S et al (2012) Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect 14:273–278. doi:10.1016/j.micinf.2011.10.007

    Article  CAS  Google Scholar 

  11. Lee DK, Park JE, Kim MJ et al (2015) Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin Res Hepatol Gastroenterol 39:237–244. doi:10.1016/j.clinre.2014.09.006

    Article  Google Scholar 

  12. Liu F, Li G, Wen K et al (2010) Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 23:135–149. doi:10.1089/vim.2009.0088

    Article  CAS  Google Scholar 

  13. Muñoz JAM, Chenoll E, Casinos B et al (2011) Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl Environ Microbiol 77:8775–8783. doi:10.1128/AEM.05548-11

    Article  Google Scholar 

  14. Seo BJ, Mun MR, Kumar RVJ et al (2010) Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus. Vet Res Commun 34:323–333. doi:10.1007/s11259-010-9357-6

    Article  Google Scholar 

  15. MacPherson C, Audy J, Mathieu O, Tompkins TA (2014) Multistrain probiotic modulation of intestinal epithelial cells’ immune response to a double-stranded RNA ligand, Poly(I C). Appl Environ Microbiol 80:1692–1700. doi:10.1128/AEM.03411-13

    Article  Google Scholar 

  16. Buccigrossi V, Laudiero G, Russo C et al (2014) Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PLoS ONE 9:1–12. doi:10.1371/journal.pone.0099830

    Article  Google Scholar 

  17. Chattha KS, Vlasova AN, Kandasamy S et al (2013) Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model. J Immunol 191:2446–2456. doi:10.4049/jimmunol.1300678

    Article  CAS  Google Scholar 

  18. Zhang W, Azevedo MSP, Gonzalez AM et al (2008) Influence of probiotic Lactobacilli colonization on neonatal B cell responses in a gnotobiotic pig model of human rotavirus infection and disease. Vet Immunol Immunopathol 122:175–181. doi:10.1016/j.vetimm.2007.10.003

    Article  CAS  Google Scholar 

  19. Zhang W, Azevedo MSP, Wen K et al (2008) Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine 26:3655–3661. doi:10.1016/j.vaccine.2008.04.070

    Article  CAS  Google Scholar 

  20. Wen K, Li G, Zhang W et al (2011) Development of γδ T cell subset responses in gnotobiotic pigs infected with human rotaviruses and colonized with probiotic lactobacilli. Vet Immunol Immunopathol 141:267–275. doi:10.1016/j.vetimm.2011.03.016

    Article  CAS  Google Scholar 

  21. Liu F, Li G, Wen K et al (2013) Lactobacillus rhamnosus GG on rotavirus-induced injury of ileal epithelium in gnotobiotic pigs. J Pediatr Gastroenterol Nutr 57:750–758. doi:10.1097/MPG.0b013e3182a356e1

    Article  Google Scholar 

  22. Vlasova AN, Chattha KS, Kandasamy S et al (2013) Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS ONE 8:1–15. doi:10.1371/journal.pone.0076962

    Article  Google Scholar 

  23. Wu S, Yuan L, Zhang Y et al (2013) Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine. Gut Pathog 5:22. doi:10.1186/1757-4749-5-22

    Article  Google Scholar 

  24. Zhang H, Wang H, Shepherd M et al (2014) Probiotics and virulent human rotavirus modulate the transplanted human gut microbiota in gnotobiotic pigs. Gut Pathog 6:39. doi:10.1186/s13099-014-0039-8

    Article  Google Scholar 

  25. Liu F, Wen K, Li G et al (2014) Dual functions of lactobacillus acidophilus NCFM as protection against rotavirus diarrhea. J Pediatr Gastroenterol Nutr 58:169–176. doi:10.1097/MPG.0000000000000197

    Article  Google Scholar 

  26. Wen K, Liu F, Li G et al (2015) Lactobacillus rhamnosus GG dosage affects the adjuvanticity and protection against rotavirus diarrhea in gnotobiotic pigs. J Pediatr Gastroenterol Nutr 60:834–843. doi:10.1097/MPG.0000000000000694

    Article  Google Scholar 

  27. Kandasamy S, Chattha KS, Vlasova AN et al (2014) Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes 5:639–651. doi:10.4161/19490976.2014.969972

    Article  Google Scholar 

  28. Duffy LC, Zielezny MA, Riepenhoff-Talty M et al (1994) Effectiveness of Bifidobacterium bifidum in mediating the clinical course of murine rotavirus diarrhea. Pediatr Res 35:690–695. doi:10.1203/00006450-199406000-00014

    Article  CAS  Google Scholar 

  29. Pant N, Marcotte H, Brüssow H et al (2007) Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol 7:86. doi:10.1186/1471-2180-7-86

    Article  Google Scholar 

  30. Preidis GA, Saulnier DM, Blutt SE et al (2012) Host response to probiotics determined by nutritional status of rotavirus-infected neonatal mice. J Pediatr Gastroenterol Nutr 55:1. doi:10.1097/MPG.0b013e31824d2548

    Article  Google Scholar 

  31. Zhang Z, Xiang Y, Li N et al (2013) Protective effects of Lactobacillus rhamnosus GG against human rotavirus-induced diarrhoea in a neonatal mouse model. Pathog Dis 67:184–191. doi:10.1111/2049-632X.12030

    Article  Google Scholar 

  32. Guérin-Danan C, Meslin JC, Chambard A et al (2001) Food supplementation with milk fermented by Lactobacillus casei DN-114 001 protects suckling rats from rotavirus-associated diarrhea. J Nutr 131:111–117

    Google Scholar 

  33. Ventola H, Lehtoranta L, Madetoja M et al (2012) Effects of the viability of Lactobacillus rhamnosus GG on rotavirus infection in neonatal rats. World J Gastroenterol 18:5925–5931. doi:10.3748/wjg.v18.i41.5925

    Article  Google Scholar 

  34. Teran CG, Teran-Escalera CN, Villarroel P (2009) Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children. Int J Infect Dis 13:518–523. doi:10.1016/j.ijid.2008.09.014

    Article  CAS  Google Scholar 

  35. Grandy G, Medina M, Soria R et al (2010) Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Dis 10:253. doi:10.1186/1471-2334-10-253

    Article  Google Scholar 

  36. Szymański H, Pejcz J, Jawień M et al (2006) Treatment of acute infectious diarrhoea in infants and children with a mixture of three Lactobacillus rhamnosus strains—a randomized, double-blind, placebo-controlled trial. Aliment Pharmacol Ther 23:247–253. doi:10.1111/j.1365-2036.2006.02740.x

    Article  Google Scholar 

  37. Sindhu KNC, Sowmyanarayanan TV, Paul A et al (2014) Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis 58:1107–1115. doi:10.1093/cid/ciu065

    Article  CAS  Google Scholar 

  38. Mao M, Yu T, Xiong Y et al (2008) Effect of a lactose-free milk formula supplemented with bifidobacteria and streptococci on the recovery from acute diarrhoea. Asia Pac J Clin Nutr 17:30–34

    Google Scholar 

  39. Sarker SA, Sultana S, Fuchs GJ et al (2005) Lactobacillus paracasei strain ST11 has no effect on rotavirus but ameliorates the outcome of nonrotavirus diarrhea in children from Bangladesh. Pediatrics 116:e221–e228. doi:10.1542/peds.2004-2334

    Article  Google Scholar 

  40. Dutta P, Mitra U, Dutta S et al (2011) Randomised controlled clinical trial of Lactobacillus sporogenes (Bacillus coagulans), used as probiotic in clinical practice, on acute watery diarrhoea in children. Trop Med Int Heal 16:555–561. doi:10.1111/j.1365-3156.2011.02745.x

    Article  Google Scholar 

  41. Erdoǧan Ö, Tanyeri B, Torun E et al (2012) The comparition of the efficacy of two different probiotics in rotavirus gastroenteritis in children. J Trop Med. doi:10.1155/2012/787240

    Google Scholar 

  42. Dalgic N, Sancar M, Bayraktar B et al (2011) Probiotic, zinc and lactose-free formula in children with rotavirus diarrhea: are they effective? Pediatr Int 53:677–682. doi:10.1111/j.1442-200X.2011.03325.x

    Article  CAS  Google Scholar 

  43. Corrêa NBO, Penna FJ, Lima FMLS et al (2011) Treatment of acute diarrhea with Saccharomyces Boulardii in infants. J Pediatr Gastroenterol Nutr 53:1. doi:10.1097/MPG.0b013e31822b7ab0

    Article  Google Scholar 

  44. Isolauri E, Juntunen M, Rautanen T et al (1991) A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88:90–97

    CAS  Google Scholar 

  45. Suárez JE (2015) Autochthonous microbiota, probiotics and prebiotics. Nutr Hosp 31:3–9. doi:10.3305/nh.2015.31.sup1.8701

    Google Scholar 

  46. Corzo N, Alonso JL, Azpiroz F et al (2015) Prebiotics: concept, properties and beneficial effects. Nutr Hosp 31:99–118. doi:10.3305/nh.2015.31.sup1.8715

    Google Scholar 

  47. Hester SN, Chen X, Li M et al (2013) Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br J Nutr. doi:10.1017/S0007114513000391

    Google Scholar 

  48. Li M, Wang M, Comstock SS et al (2014) Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J 8:1609–1620. doi:10.1038/ismej.2014.10

    Article  CAS  Google Scholar 

  49. Noguera T, Wotring R, Melville CR et al (2014) Resolution of acute gastroenteritis symptoms in children and adults treated with a novel polyphenol-based prebiotic. World J Gastroenterol 20:12301–12307. doi:10.3748/wjg.v20.i34.12301

    Article  Google Scholar 

  50. Binns CW, Lee AH, Harding H et al (2007) The CUPDAY Study : prebiotic-probiotic milk product in 1–3-year-old children attending childcare centres. Acta Paediatr Int J Paediatr. doi:10.1111/j.1651-2227.2007.00508.x

    Google Scholar 

  51. Veereman-Wauters G, Staelens S, Van de Broek H et al (2011) Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J Pediatr Gastroenterol Nutr 52:763–771. doi:10.1097/MPG.0b013e3182139f39

    Article  CAS  Google Scholar 

  52. Pan X, Chen F, Wu T et al (2009) Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J Zhejiang Univ Sci B 10:258–263. doi:10.1631/jzus.B0820261

    Article  CAS  Google Scholar 

  53. Djouzi Z, Andrieux C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78:313–324. doi:10.1079/BJN19970149

    Article  CAS  Google Scholar 

  54. Bruzzese E, Volpicelli M, Squeglia V et al (2009) A formula containing galacto- and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: an observational study. Clin Nutr 28:156–161. doi:10.1016/j.clnu.2009.01.008

    Article  CAS  Google Scholar 

  55. Arslanoglu S, Moro GE, Boehm G (2007) Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr 137:2420–2424

    CAS  Google Scholar 

  56. Osborn DA, Sinn JKH (2013) Prebiotics in infants for prevention of allergy. Cochrane Db Syst Rev 3:CD006474

    Google Scholar 

  57. Van Hoffen E, Ruiter B, Faber J et al (2009) A specific mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides induces a beneficial immunoglobulin profile in infants at high risk for allergy. Allergy Eur J Allergy Clin Immunol 64:484–487. doi:10.1111/j.1398-9995.2008.01765.x

    Article  Google Scholar 

  58. Scholtens PAMJ, Alliet P, Raes M et al (2008) Fecal secretory immunoglobulin A is increased in healthy infants who receive a formula with short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides. J Nutr 138:1141–1147

    CAS  Google Scholar 

  59. Bakker-Zierikzee AM, Van Tol EAF, Kroes H et al (2006) Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 17:134–140. doi:10.1111/j.1399-3038.2005.00370.x

    Article  CAS  Google Scholar 

  60. Salvatore S, Vandenplas Y (2010) Bioact Foods Promot Health. doi: 10.1016/B978-0-12-374938-3.00013-X

  61. Bryk G, Coronel MZ, Pellegrini G et al (2015) Effect of a combination GOS/FOS(®) prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr 54:913–923. doi:10.1007/s00394-014-0768-y

    Article  CAS  Google Scholar 

  62. Bryk G, Hernandez E, Chaves MG et al (2015) Utilidad de una mezcla prebiótica para aumentar la absorción y retención de calcio durante el crecimiento normal y durante la recuperación de una malnutrición proteica: modelo experimental en ratas. Actual Osteol 11:19–37

    Google Scholar 

  63. Schmidt K, Cowen PJ, Harmer CJ et al (2015) Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232:1793–1801. doi:10.1007/s00213-014-3810-0

    Article  CAS  Google Scholar 

  64. Savignac HM, Corona G, Mills H et al (2013) Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63:756–764. doi:10.1016/j.neuint.2013.10.006

    Article  CAS  Google Scholar 

  65. Vos AP, Haarman M, Buco A et al (2006) A specific prebiotic oligosaccharide mixture stimulates delayed-type hypersensitivity in a murine influenza vaccination model. Int Immunopharmacol 6:1277–1286. doi:10.1016/j.intimp.2006.03.010

    Article  CAS  Google Scholar 

  66. Vos AP, Haarman M, VanGinkel JWH et al (2007) Dietary supplementation of neutral and acidic oligosaccharides enhances Th1-dependent vaccination responses in mice. Pediatr Allergy Immunol 18:304–312. doi:10.1111/j.1399-3038.2007.00515.x

    Article  Google Scholar 

  67. Verheijden KAT, Willemsen LEM, Braber S et al (2015) The development of allergic inflammation in a murine house dust mite asthma model is suppressed by synbiotic mixtures of non-digestible oligosaccharides and Bifidobacterium breve M-16V. Eur J Nutr. doi:10.1007/s00394-015-0928-8

    Google Scholar 

  68. Hougee S, Vriesema AJM, Wijering SC et al (2010) Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol 151:107–117. doi:10.1159/000236000

    Article  CAS  Google Scholar 

  69. De Kivit S, Saeland E, Kraneveld AD et al (2012) Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy Eur J Allergy Clin Immunol 67:343–352. doi:10.1111/j.1398-9995.2011.02771.x

    Article  Google Scholar 

  70. De Kivit S, Kraneveld AD, Knippels LMJ et al (2013) Intestinal epithelium-derived galectin-9 is involved in the immunomodulating effects of nondigestible oligosaccharides. J Innate Immun 5:625–638. doi:10.1159/000350515

    Article  Google Scholar 

  71. Van De Pol MA, Lutter R, Smids BS et al (2011) Synbiotics reduce allergen-induced T-helper 2 response and improve peak expiratory flow in allergic asthmatics. Allergy Eur J Allergy Clin Immunol 66:39–47. doi:10.1111/j.1398-9995.2010.02454.x

    Article  Google Scholar 

  72. Schouten B, van Esch BCAM, Hofman GA et al (2009) Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey. J Nutr 139:1398–1403. doi:10.3945/jn.109.108514

    Article  CAS  Google Scholar 

  73. Pérez-Cano FJ, Marín-Gallén S, Castell M et al (2007) Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats. Br J Nutr 98:S80–S84. doi:10.1017/S0007114507838074

    Article  Google Scholar 

  74. Pérez-Cano FJ, Marín-Gallén S, Castell M et al (2008) Supplementing suckling rats with Whey protein concentrate modulates the immune response and ameliorates rat. J Nutr. doi:10.3945/jn.108.093856

    Google Scholar 

  75. Pérez-Cano FJ, Castell M, Castellote C, Franch À (2007) Characterization of clinical and immune response in a rotavirus diarrhea model in suckling Lewis rats. Pediatr Res 62:658–663. doi:10.1203/PDR.0b013e318159a273

    Article  Google Scholar 

  76. Costabile A, Kolida S, Klinder A et al (2010) A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 104:1007–1017. doi:10.1017/S0007114510001571

    Article  CAS  Google Scholar 

  77. Gomez E, Tuohy KM, Gibson GR et al (2010) In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. J Appl Microbiol 108:2114–2121. doi:10.1111/j.1365-2672.2009.04617.x

    CAS  Google Scholar 

  78. Pérez-Cano FJ, Franch À, Castellote C, Castell M (2012) The suckling rat as a model for immunonutrition studies in early life. Clin Dev Immunol 2012:537310. doi:10.1155/2012/537310

    Google Scholar 

  79. Patole S, Keil AD, Chang A et al (2014) Effect of Bifidobacterium breve M-16V supplementation on fecal bifidobacteria in preterm neonates—a randomised double blind placebo controlled trial. PLoS ONE 9:1–8. doi:10.1371/journal.pone.0089511

    Article  Google Scholar 

  80. Yamashiro Y, Nagata S (2010) Beneficial microbes for premature infants, and children with malignancy undergoing chemotherapy. Benef Microbes 1:357–365. doi:10.3920/BM2010.0035

    Article  CAS  Google Scholar 

  81. Guérin-Danan C, Meslin JC, Lambre F et al (1998) Development of a heterologous model in germfree suckling rats for studies of rotavirus diarrhea. J Virol 72:9298–9302

    Google Scholar 

  82. Etzold S, Bode L (2014) Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr Opin Virol 7:101–107. doi:10.1016/j.coviro.2014.06.005

    Article  CAS  Google Scholar 

  83. Ciarlet M, Conner ME, Finegold MJ, Estes MK (2002) Group a rotavirus infection and age-dependent diarrheal disease in rats: a new animal model to study the pathophysiology of rotavirus infection. J Virol 76:41–57. doi:10.1128/JVI.76.1.41

    Article  CAS  Google Scholar 

  84. Knipping K, McNeal MM, Crienen A et al (2011) A gastrointestinal rotavirus infection mouse model for immune modulation studies. Virol J 8:109. doi:10.1186/1743-422X-8-109

    Article  Google Scholar 

  85. Inoue Y, Iwabuchi N, Xiao JZ et al (2009) Suppressive effects of bifidobacterium breve strain M-16V on T-helper type 2 immune responses in a murine model. Biol Pharm Bull 32:760–763. doi:10.1248/bpb.32.760

    Article  CAS  Google Scholar 

  86. Desselberger U, Huppertz H-I (2011) Immune responses to rotavirus infection and vaccination and associated correlates of protection. J Infect Dis 203:188–195. doi:10.1093/infdis/jiq031

    Article  CAS  Google Scholar 

  87. Macfarlane GT, Macfarlane S (2011) Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 45:S120–S127. doi:10.1097/MCG.0b013e31822fecfe

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Nutricia Research grant in collaboration with the Fundació Bosch i Gimpera (FBG306349). MRA was the recipient of a fellowship from the Fundació Pedro i Pons. The authors thank Dr. Adele Costabile for her help and advice with the HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Pérez-Cano.

Ethics declarations

Conflict of interest

The authors declare that they have a financial relationship with the organization that sponsored the research. K. van Limpt, K. Knipping, J. Garssen and J. Knol are employees of Nutricia Research B.V. The other authors declare that they have no conflict of interest.

Ethical standards

The studies were conducted in accordance with the institutional guidelines for the care and use of laboratory animals established by the Ethics Committee for Animal Experimentation of the University of Barcelona and the Catalonian Government (CEEA-UB Ref.165/11, DAAM: 5871).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigo-Adrover, M., Saldaña-Ruíz, S., van Limpt, K. et al. A combination of scGOS/lcFOS with Bifidobacterium breve M-16V protects suckling rats from rotavirus gastroenteritis. Eur J Nutr 56, 1657–1670 (2017). https://doi.org/10.1007/s00394-016-1213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1213-1

Keywords

Navigation