Skip to main content
Log in

The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze whether the combination of resveratrol and quercetin showed additive or synergic effects on body fat accumulation and triacylglycerol metabolism in adipose tissue from rats fed an obesogenic diet.

Methods

Rats were divided into four dietary groups: a control group and three groups each treated with either resveratrol (15 mg/kg/day; RSV), quercetin (30 mg/kg/day; Q), or both (15 mg resveratrol/kg/day and 30 mg quercetin/kg/day; RSV + Q) for 6 weeks. White adipose tissues from several anatomical locations were dissected. Serum parameters were analyzed by using commercial kits. The activities of fatty acid synthase and heparin-releasable lipoprotein lipase (HR-LPL) were measured using spectrophotometric and fluorimetric methods, and protein expression of acetyl-CoA carboxylase (ACC), adipose tissue triglyceride lipase (ATGL), and hormone-sensitive lipase (HSL) by western blot.

Results

The administration of either resveratrol or quercetin separately did not induce significant reductions in adipose tissue weights. By contrast, the combination of both molecules led to a significant reduction in all the fat depots analyzed. The percentage of reduction in each tissue was greater than the calculated additive effect. HR-LPL activity was reduced in RSV and RSV + Q groups. The activity of HSL was not modified. By contrast, ACC was inhibited and ATGL increased only by the combination of both polyphenols.

Conclusion

The results obtained demonstrate a synergistic effect between resveratrol and quercetin and suggest that when these molecules are combined, a great number of metabolic pathways involved in adipose tissue triacylglycerol accumulation are affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 32:1431–1437

    Article  CAS  Google Scholar 

  2. van Strien T, Koenders PG (2012) How do life style factors relate to general health and overweight? Appetite 58:265–270

    Article  Google Scholar 

  3. van Vliet-Ostaptchouk JV, Snieder H, Lagou V (2012) Gene–lifestyle interactions in obesity. Curr Nutr Rep 1:184–196

    Article  CAS  Google Scholar 

  4. Szkudelska K, Szkudelski T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635:1–8

    Article  CAS  Google Scholar 

  5. Aguirre L, Fernández-Quintela A, Arias N, Portillo MP (2014) Resveratrol: anti-obesity mechanisms of action. Molecules 19:18632–18655

    Article  Google Scholar 

  6. Dal-Pan A, Blanc S, Aujard F (2010) Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol 10:11

    Article  Google Scholar 

  7. Jimenez-Gomez Y, Mattison JA, Pearson KJ et al (2013) Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 18:533–545

    Article  CAS  Google Scholar 

  8. Panchal SK, Poudyal H, Brown L (2012) Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr 142:1026–1032

    Article  CAS  Google Scholar 

  9. Jung CH, Cho I, Ahn J, Jeon TI, Ha TY (2013) Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res 27:139–143

    Article  CAS  Google Scholar 

  10. Yoshino J, Conte C, Fontana L et al (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 16:658–664

    Article  CAS  Google Scholar 

  11. Crandall JP, Oram V, Trandafirescu G et al (2012) Pilot study of resveratrol in older adults with impaired glucose tolerance. J Gerontol A Biol Sci Med Sci 67:1307–1312

    Article  Google Scholar 

  12. Poulsen MM, Vestergaard PF, Clasen BF et al (2013) High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62:1186–1195

    Article  CAS  Google Scholar 

  13. Chachay VS, Macdonald GA, Martin JH et al (2014) Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 12(2092–2103):e2096

    Google Scholar 

  14. Cho SJ, Jung UJ, Choi MS (2012) Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr 108:2166–2175

    Article  CAS  Google Scholar 

  15. Gómez-Zorita S, Fernández-Quintela A, Macarulla MT et al (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107:202–210

    Article  Google Scholar 

  16. Timmers S, Konings E, Bilet L et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    Article  CAS  Google Scholar 

  17. Yang JY, Della-Fera MA, Rayalam S et al (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82:1032–1039

    Article  CAS  Google Scholar 

  18. Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA (2007) Resveratrol potentiates genistein’s antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J Nutr 137:2668–2673

    CAS  Google Scholar 

  19. Park HJ, Yang JY, Ambati S et al (2008) Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 11:773–783

    Article  CAS  Google Scholar 

  20. Herranz-López M, Fernández-Arroyo S, Pérez-Sanchez A et al (2012) Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine 19:253–261

    Article  Google Scholar 

  21. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  22. Somerset SM, Johannot L (2008) Dietary flavonoid sources in Australian adults. Nutr Cancer 60:442–449

    Article  CAS  Google Scholar 

  23. Macarulla MT, Alberdi G, Gómez S et al (2009) Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 65:369–376

    Article  CAS  Google Scholar 

  24. Del Prado M, Hernandez-Montes H, Villalpando S (1994) Characterization of a fluorometric method for lipoprotein lipase. Arch Med Res 25:331–335

    Google Scholar 

  25. Miranda J, Churruca I, Fernández-Quintela A et al (2009) Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters. Br J Nutr 102:1583–1589

    Article  CAS  Google Scholar 

  26. Alberdi G, Rodríguez VM, Miranda J et al (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8:29

    Article  CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  28. Carpéné C, Gomez-Zorita S, Gupta R et al (2014) Combination of low dose of the anti-adipogenic agents resveratrol and phenelzine in drinking water is not sufficient to prevent obesity in very-high-fat diet-fed mice. Eur J Nutr 53:1625–1635

    Article  Google Scholar 

  29. Arias N, Macarulla MT, Aguirre L et al (2011) The combination of resveratrol and conjugated linoleic acid is not useful in preventing obesity. J Physiol Biochem 67:471–477

    Article  CAS  Google Scholar 

  30. Arias N, Miranda J, Macarulla MT et al (2014) The combination of resveratrol and conjugated linoleic acid attenuates the individual effects of these molecules on triacylglycerol metabolism in adipose tissue. Eur J Nutr 53:575–582

    Article  CAS  Google Scholar 

  31. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  Google Scholar 

  32. Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 16:2081–2087

    Article  CAS  Google Scholar 

  33. Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H (2008) Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 29:698–706

    Article  CAS  Google Scholar 

  34. Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81:1343–1351

    Article  CAS  Google Scholar 

  35. Kobori M, Masumoto S, Akimoto Y, Oike H (2011) Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Mol Nutr Food Res 55:530–540

    Article  CAS  Google Scholar 

  36. Arias N, Macarulla MT, Aguirre L, Martínez-Castaño MG, Portillo MP (2014) Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation. Genes Nutr 9:361

    Article  CAS  Google Scholar 

  37. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  Google Scholar 

  38. Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging (Albany NY) 4:146–158

    Google Scholar 

  39. de Ligt M, Timmers S, Schrauwen P (2014) Resveratrol and obesity: Can resveratrol relieve metabolic disturbances? Biochim Biophys Acta (in press)

  40. National Institutes of Health (NIH) in USA. ClinicalTrials.gov

  41. Rayalam S, Della-Fera MA, Ambati S, Boyan B, Baile CA (2007) Enhanced effects of guggulsterone plus 1,25(OH)2D3 on 3T3-L1 adipocytes. Biochem Biophys Res Commun 364:450–456

    Article  CAS  Google Scholar 

  42. Panchal SK, Brown L (2011) Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011:351982

    Article  Google Scholar 

  43. Babacanoglu C, Yildirim N, Sadi G, Pektas MB, Akar F (2013) Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats. Food Chem Toxicol 60:160–167

    Article  CAS  Google Scholar 

  44. Vang O, Ahmad N, Baile CA et al (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6:e19881

    Article  CAS  Google Scholar 

  45. Wang S, Moustaid-Moussa N, Chen L et al (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25:1–18

    Article  Google Scholar 

  46. Lane MD, Moss J, Polakis SE (1974) Acetyl coenzyme A carboxylase. Curr Top Cell Regul 8:139–195

    Article  CAS  Google Scholar 

  47. Miyoshi H, Perfield JW, Obin MS, Greenberg AS (2008) Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105:1430–1436

    Article  CAS  Google Scholar 

  48. Watt M, Steinberg G (2008) Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J 414:313–325

    Article  CAS  Google Scholar 

  49. Haemmerle G, Lass A, Zimmermann R et al (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    Article  CAS  Google Scholar 

  50. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  CAS  Google Scholar 

  51. Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministerio de Economía y Competitividad (AGL2011-27406-ALI), Instituto de Salud Carlos III (Ciberobn), Government of the Basque Country (IT-572-13), and University of the Basque Country (UPV/EHU) (ELDUNANOTEK UFI11/32). N. Arias is a recipient of a doctoral fellowship from the Basque Country Government. Resveratrol was a generous gift from Monteloeder (Elche, Alicante, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María P. Portillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, N., Macarulla, M.T., Aguirre, L. et al. The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. Eur J Nutr 55, 341–348 (2016). https://doi.org/10.1007/s00394-015-0854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0854-9

Keywords

Navigation