Skip to main content
Log in

The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Tomato products are a dietary source of natural antioxidants, especially lycopene, which accumulates in the liver, where it exerts biological effects. Taking into consideration this fact, the aim of the present study was to ascertain the effect of tomato consumption on biomarkers and gene expression related to lipid metabolism in rats with induced steatosis.

Methods

Adult male Sprague–Dawley rats (8 weeks old) were randomly grouped (n = 6 rats/group) in four experimental groups: NA (normal diet and water), NL (normal diet and tomato juice), HA (high fat diet and water) and HL (high fat diet and tomato juice). After 7 weeks, rats were euthanized, and plasma, urine, feces and liver were sampled to analyze the biomarkers related to lipid metabolism, inflammation and oxidative stress.

Results

The H diet induced steatosis (grade II) in the HA and HL groups, which was confirmed by the levels of alanine aminotransferase and aspartate aminotransferase, histological examination and the presence of dyslipidemia. The intake of tomato juice led to an accumulation of all-E and Z-lycopene and its metabolites in the livers of these animals; levels were higher in HL than in NL, apparently due to higher absorption (63.07 vs. 44.45 %). A significant improvement in the plasma level of high-density lipoprotein was observed in the HL group compared with HA animals, as was an alleviation of oxidative stress through reduction of isoprostanes in the urine. In relation to fatty acid gene expression, an overexpression of several genes related to fatty acid transport, lipid hydrolysis and mitochondrial and peroxisomal β-fatty acid oxidation was observed in the HL group.

Conclusions

The consumption of tomato juice and tomato products reduced hallmarks of steatosis, plasmatic triglycerides and very low-density lipoproteins, and increased lipid metabolism by inducing an overexpression of genes involved in more efficient fatty acid oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Charatcharoenwitthya P, Lindor KD (2010) Lipid metabolism and control in nonalcoholic fatty liver disease. In: Preedy VR, Lakshman R, Srirajaskanthan R, Watson RR (eds) Nutrition, diet therapy, and the liver. CRC Press, FL 33487-2742, USA, pp 67–80

  2. Adiels M, Westerbacka J, Soro Paavonen A, Hakkinen AM, Vehkavaara S, Caslake MJ et al (2007) Acute suppression of VLDL (1) secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50:2356–2365

    Article  CAS  Google Scholar 

  3. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Jarvinen H, Svegliati-Baroni G (2010) From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 42:320–330

    Article  CAS  Google Scholar 

  4. Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S et al (2013) The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 59:138–143

    Article  CAS  Google Scholar 

  5. Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S (2003) Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol 98:2485–2490

    Article  CAS  Google Scholar 

  6. Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ (2003) Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 38:413–419

    Article  CAS  Google Scholar 

  7. Bujanda L, Hijona E, Larzabal M, Beraza M, Aldazabal P, García-Urkia N et al (2008) Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol 8:40

    Article  Google Scholar 

  8. Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang X-D (2010) Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer 26:1788–1796

    Google Scholar 

  9. Ahn J, Lee H, Jung CH, Ha T (2012) Licopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res 56:1665–1674

    Article  CAS  Google Scholar 

  10. Thong-Ngam D, Samuhasaneeto S, Kulaputana O, Klaikeaw N (2007) N-acetylcysteine attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis. World J Gastroenterol 13:5127–5132

    CAS  Google Scholar 

  11. Periago MJ, García-Alonso J, Jacob K, Olivares AB, Bernal MJ, Iniesta MD et al (2009) Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int J Food Sci Nutr 60:694–708

    Article  Google Scholar 

  12. García-Valverde V, Navarro-González I, García-Alonso J, Periago M (2013) Antioxidant Bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol 6:391–402

    Article  Google Scholar 

  13. Garcia-Alonso FJ, Bravo S, Casas J, Pérez-Conesa D, Jacob K, Periago MJ (2009) Changes in antioxidant compounds during the shelf life of commercial tomato juices in different packaging materials. J Agric Food Chem 57:6815–6822

    Article  CAS  Google Scholar 

  14. Jacob K, Periago MJ, Böhm V, Berruezo G (2008) Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Brit J Nutr 99:137–146

    Article  CAS  Google Scholar 

  15. García-Alonso FJ, Jorge-Vidal V, Ros G, Periago MJ (2012) Effect of consumption of tomato juice enriched with & #x03C9;-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women. Eur J Nutr 5:415–424

    Article  Google Scholar 

  16. Bernal C, Martín-Pozuelo G, Lozano AB, Sevilla A, García-Alonso J, Canovas M et al (2013) Lipid biomarkers and metabolic effects of lycopene from tomato juice on liver of rats with induced hepatic steatosis. J Nutr Biochem 24:1870–1881

    Article  CAS  Google Scholar 

  17. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474

    Article  CAS  Google Scholar 

  18. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L et al (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  CAS  Google Scholar 

  19. Helger R, Rindfrey H, Hilgenfeldt J (1974) Direct estimation of creatinine in serum and in urine without deproteinization using a modified Jaffé method. Z Klin Chem Klin Biochem 12:344–349

    CAS  Google Scholar 

  20. Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B 827:76–82

    Article  CAS  Google Scholar 

  21. Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250

    Article  CAS  Google Scholar 

  22. Seybold C, Fröhlich K, Bitsch R, Otto K, Böhm V (2004) Changes in contents of carotenoids and vitamin E during tomato processing. J Agric Food Chem 52:7005–7010

    Article  CAS  Google Scholar 

  23. Peso Echarri P, Frontela-Saseta C, Santaella-Pascual M, García-Alcaráz A, Abdel I, Ros-Berruezo G et al (2012) Sodium alginate as seed additive in cultured sea bream (Sparus aurata): does it modify the quality of the flesh? Food Chem 135:699–705

    Article  CAS  Google Scholar 

  24. Hijona E, Hijona L, Larzabal M, Sarasqueta C, Aldazabal P, Arenas J, Bujanda L (2010) Biochemical determination of lipid content in hepatic steatosis by Soxtec method. World J Gastroenterol 16:1495–1499

    Article  CAS  Google Scholar 

  25. León Goñi AC, Blanco D, Peña A, Ronda M, González BO, Arteaga ME et al (2011) Hematological and biochemical parameters in Sprague Dawley laboratory rats breed in CENPALAB, Cenp: SPRD. Rev Electrón Vet 12:1–10

    Google Scholar 

  26. Moreira EAM, Fagundes RLM, Wilhelm D, Neves D, Sell F, Bellisle F et al (2005) Effects of diet energy level and tomato powder consumption on antioxidant status in rats. Clin Nutr 24:1038–1046

    Article  CAS  Google Scholar 

  27. Ahmed U, Redgrave TG, Oates PS (2009) Effect of dietary fat to produce non-alcoholic fatty liver in the rat. J Gastroenterol Hepatol 24:1463–1471

    Article  CAS  Google Scholar 

  28. Maiani G, Periago Castón MJ, Catasta G, Toti E, Goni Cambrodon I, Bysted A et al (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:S194–S218

    Article  Google Scholar 

  29. Mordente A, Guantario B, Meucci E, Silvestrini A, Lombardi E, Martorana GE et al (2011) Lycopene and cardiovascular diseases: an update. Curr Med Chem 18:1146–1163

    Article  CAS  Google Scholar 

  30. Navarro-González I, Pérez-Sánchez H, Martín-Pozuelo G, García-Alonso J, Periago MJ (2014) The inhibitory effects of bioactive compounds of tomato juice binding to hepatic HMGCR: in vivo study and molecular modelling. PLoS ONE 9:e83968

    Article  Google Scholar 

  31. Musso G, Gambino R, Cassader M (2009) Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 48:1–26

    Article  CAS  Google Scholar 

  32. Markovits N, Amotz AB, Levy Y (2009) The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. IMAJ 11:598–601

    Google Scholar 

  33. Sookoian S, Castaño GO, Burgueño AL, Rosselli MS, Fernández Gianotti T, Mallardi P et al (2010) Circulating levels and hepatic expression of molecular mediators of atherosclerosis in nonalcoholic fatty liver disease. Atherosclerosis 209:585–591

    Article  CAS  Google Scholar 

  34. Roberts LJ, Morrow JD (2000) Measurement of F-2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  CAS  Google Scholar 

  35. Helledie T, Antonius M, Sorensen RV, Hertzel AV, Bernlohr DA, Kølvraa S et al (2000) Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferators-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res 41:1740–1751

    CAS  Google Scholar 

  36. Wolfrum C, Borrmann CM, Borchers T, Spener F (2001) Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 98:2323–2328

    Article  CAS  Google Scholar 

  37. Tan NS, Shaw NS, Vinckenbosh N, Liu P, Yasmin R, Desvergne B et al (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferators-activated receptors in regulating transcription. Mol Cell Biol 22:5114–5127

    Article  CAS  Google Scholar 

  38. Iseki S, Kondo H, Hitomi M, Ono T (1990) Localization of liver fatty acid-binding protein and its mRNA in the liver and jejunum of rats: an immunohistochemical and in situ hybridization study. Mol Cell Biochem 98:27–33

    Article  CAS  Google Scholar 

  39. Carey JO, Neufer D, Farrar RP, Veerkamp JH, Dohm GL (1994) Transcriptional regulation of muscle fatty acid-binding protein. Biochem J 298:613–617

    Article  CAS  Google Scholar 

  40. Auinger A, Helwih U, Rubin S, Herrmann J, Jahreis G, Pfeuffer M et al (2010) Human intestinal fatty acid binding protein 2 expression is associated with fat intake and polymorphisms. J Nutr 140:1411–1417

    Article  CAS  Google Scholar 

  41. Doege H, Ra Baillie, Ortegon AM, Tsang B, Wu Q, Punreddy S et al (2006) Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245–1258

    Article  CAS  Google Scholar 

  42. Courtney M, Stahl A (2013) SLC27 fatty acid transport proteins. Mol Aspects Med 34:516–528

    Article  Google Scholar 

  43. Fruchard JC, Duriez P (2006) Mode of action of fibrates in the regulation of triglycerides and HDL-cholesterol metabolism. Drugs Today 42:39–64

    Google Scholar 

  44. Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43:993–999

    Article  CAS  Google Scholar 

  45. Augustus AS, Kako Y, Yagyu H, Goldberg IJ (2003) Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Meta 284:E331–E339

    Article  CAS  Google Scholar 

  46. Fernández C, Schumann K, Herzog R, Fielding B, Frayn K, Schevchenko A et al (2011) Altered desaturation and elongation of fatty acids in hormone-sensitive lipase null mice. PLoS ONE 6:e21603–e31615

    Article  Google Scholar 

  47. Lee SEL, Lee EH, Lee TJ, Kim SW, Kim BH (2013) Anti-obesity effect and action mechanism of Adenophora triphylla root ethanol extract in C57BL/6 obese mice fed a high-fat diet. Biosci Biotechnol Biochem 77:544–550

    Article  CAS  Google Scholar 

  48. Gyamfi D, Patel V (2010) Liver metabolism: biochemical and molecular regulations. In: Preedy VR, Lakshman R, Srirajaskanthan R, Watson RR. Nutrition, diet therapy, and the liver. CRC Press, FL 33487-2742, USA, pp 3–15

  49. Ramírez-Torres A, Barceló-Batllori S, Fernández-Vizarra E, Navarro MA, Amal C, Guillén N et al (2012) Proteomics and gene expression analyses of mitochondria from squalene-treated apoE-deficient mice identify short-chain specific acyl-CoA dehydrogenase changes associated with fatty liver amelioration. J Proteomics 75:2563–2575

    Article  Google Scholar 

  50. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T et al (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358

    CAS  Google Scholar 

  51. Tomonaga T, Masushite K, Yamagichi S, Oh-Ishi M, Kodera Y, Maeda T et al (2004) Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Can Res 10:2007–2014

    Article  CAS  Google Scholar 

  52. Bijland S, Mancini SJ, Salt LP (2013) Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci 124:491–507

    Article  CAS  Google Scholar 

  53. Palozza P, Simone R, Catalano A, Monego G, Barini A, Mele MC et al (2011) Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-κB nuclear binding and increase in PPARγ expression. J Nutr Biochem 22:259–268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the projects MINECO (Spanish)/FEDER-EU BIO2012-38103 and CONSOLIDER Fun-C-Food CSD2007, as well as by the Research Regional Agency “Fundación Séneca” (Murcia, Spain) Project 12031/PI/09. We would also like to thank Zumos Hesperia Filab and Juver Alimentación (Cabezo de Torres, Murcia, Spain) for providing the tomato juice samples. R G-B thanks Spanish MICINN for the post-doctoral contract (Juan de la Cierva Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gala Martín-Pozuelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Pozuelo, G., Navarro-González, I., González-Barrio, R. et al. The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis. Eur J Nutr 54, 933–944 (2015). https://doi.org/10.1007/s00394-014-0770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0770-4

Keywords

Navigation