Skip to main content

Advertisement

Log in

Alterations in the antioxidant defense system in prepubertal children with a history of extrauterine growth restriction

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The role of oxidative stress is well known in the pathogenesis of acquired malnutrition. Intrauterine growth restriction has been associated with an imbalance in oxidative stress/antioxidant system. Therefore, early postnatal environment and, consequently, extrauterine growth restriction might be associated with alterations in the antioxidant defense system, even in the prepubertal stage.

Methods

This is a descriptive, analytical, and observational case–control study. The study included two groups; 38 Caucasian prepubertal children born prematurely and with a history of extrauterine growth restriction as the case group, and 123 gender- and age-matched controls. Plasma exogenous antioxidant (retinol, β-carotene, and α-tocopherol) concentrations were measured by HPLC; antioxidant enzyme activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase were determined in lysed erythrocytes by spectrophotometric techniques.

Results

Catalase and glutathione peroxidase concentrations were significantly lower in extrauterine growth restriction children than in controls (P < 0.001). Lower plasma retinol concentrations were found in the case group (P = 0.029), while concentrations of β-carotene and α-tocopherol were higher (P < 0.001) in extrauterine growth restriction prepubertal children as compared with controls. After correction by gestational age, birth weight, and length, statistically significant differences were also found, except for retinol.

Conclusions

Prepubertal children with a history of extrauterine growth restriction present alterations in their antioxidant defense system. Knowing these alterations may be important in establishing pharmacological and nutritional treatments as this situation might be associated with higher metabolic disorders in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMDR:

Acceptable macronutrient distribution ranges

BMI:

Body mass index

BP:

Blood pressure

CC:

Correlation coefficient

CGA:

Corrected gestational age

CRP:

C-reactive protein

CVD:

Cardiovascular diseases

DBP:

Diastolic blood pressure

EUGR:

Extrauterine growth restriction

F:

Female

GA:

Gestational age

GR:

Glutathione reductase

GPOX:

Glutathione peroxidase

HOMA-IR:

Homeostatic model assessment

IUGR:

Intrauterine growth restriction

M:

Male

m:

Mean

MS:

Metabolic syndrome

N:

Number

NS:

Non-significant

P:

Percentile

PUFAs:

Polyunsaturated fatty acids

RDA:

Recommended dietary allowance

SBP:

Systolic blood pressure

SD:

Standard deviation

SE:

Standard error

SOD:

Superoxide dismutase

TNFα:

Tumor necrosis factor alpha

VC:

Variation coefficient

WC:

Waist circumference

References

  1. Clark RH, Thomas P, Peabody J (2003) Extrauterine growth retardation remains a serious problem in the prematurely born neonates. Pediatrics 111:986–990

    Article  Google Scholar 

  2. Curtis DM, Rigo J (2004) Extrauterine growth retardation in very-low-birthweight infants. Acta Paediatr 93:1563–1568. doi:10.1111/j.1651-2227.2004.tb00844.x

    Article  Google Scholar 

  3. Mestan K, Yu Y, Matoba N, Cerda S, Demmin B, Pearson C, Ortiz K, Wang X (2010) Placental inflammatory response is associated with poor neonatal growth: preterm birth cohort study. Pediatrics 125:891–898. doi:10.1542/peds.2009-0313

    Article  Google Scholar 

  4. Rogers S, Witz G, Anwar M, Hiatt M, Hegyi T (2000) Antioxidant capacity and oxygen radical diseases in the preterm newborn. Arch Pediatr Adolesc Med 154:544–548. doi:10.1001/archpedi.154.6.544

    Article  CAS  Google Scholar 

  5. Saker M, Soulimane Mokhtari N, Merzouk SA, Merzouk H, Belarbi B, Narce M (2008) Oxidant and antioxidant status in mothers and their newborns according to birthweight. Eur J Obstet Reprod Biol 141:95–99. doi:10.1016/j.ejogrb.2008.07.013

    Article  CAS  Google Scholar 

  6. Te Braake FW, Schierbeek H, de Groof K, Vermes A, Longini M, Buonocore G, van Goudoever JB (2008) Glutathione synthesis rates after amino acid administration directly after birth in preterm infants. Am J Clin Nutr 88:333–339

    Google Scholar 

  7. Ballard PL, Truog WE, Merrill JD, Gow A, Posencheg M, Golombek SG, Parton LA, Luan X, Cnaan A, Ballard RA (2008) Plasma biomarkers of oxidative stress: relationship to lung disease and inhaled nitric oxide therapy in premature infants. Pediatrics 121:555–561. doi:10.1542/peds.2007-2479

    Article  Google Scholar 

  8. Luo ZC, Fraser WD, Julien P, Deal CL, Audibert F, Smith GN, Xiong X, Walker M (2006) Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypot 66:38–44. doi:10.1016/j.mehy.2005.08.020

    Article  CAS  Google Scholar 

  9. Patel MS, Srinivasan M (2010) Metabolic programming due to alterations in nutrition in the immediate postnatal period. J Nutr 140:658–661. doi:10.3945/jn.109.110155

    Article  CAS  Google Scholar 

  10. Carrascosa Lezcano A, Ferrández Longás A, Yeste Fernández D, García-Dihinx Villanova J, Romo Montejo A, Copil Copil A, Almar Mendoza J, Salcedo Abizanda S, Gussinyé Canadell M, Baguer Mor L (2008) Spanish cross-sectional growth study 2008. Part I: weight and height values in newborns of 26–42 weeks of gestational age. An Pediatr (Barc) 68:544–551

    Article  CAS  Google Scholar 

  11. Tanner JM (1962) Growth at adolescence. Blackwell Scientific, Oxford

    Google Scholar 

  12. Moreno LA, Pineda I, Rodríguez G, Fleta J, Sarría A, Bueno M (2002) Waist circumference for the screening of the metabolic syndrome in children. Acta Paediatr 91:1307–1312. doi:10.1111/j.1651-2227.2002.tb02825.x

    Article  CAS  Google Scholar 

  13. Sobradillo B, Aguirre A, Aresti U, Bilbao A, Fernández-Ramos C, Lizárraga A et al (2004) Curvas y tablas de crecimiento (Estudios Longitudinal y Transversal). Instituto de Investigación sobre Crecimiento y Desarrollo, Fundación Faustino Orbegozo Eizaguirre, Bilbao

    Google Scholar 

  14. Mataix J, Llopis J, Martínez de Victoria E, Montellano MA, López Frías M, Aranda P (2000) Consejería de Salud. Valoración del estado nutricional de la Comunidad Autónoma de Andalucía. Consejería de Salud. Junta de Andalucía. http://www.csalud.junta-andalucia.es

  15. Trumbo P, Schlicker S, Yates AA, Poos M (2002) Food and nutrition board of the institute of medicine, the national academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102(11):1621–1630

    Article  Google Scholar 

  16. Gil Hernández A (2010) Capítulo 2; Ingestas dietéticas de referencia, objetivos nutricionales y guías; 31-65. Leis R. Capítulo 9; Nutrición del niño de 1-3 años, preescolar y escolar. In Gil Hernández A (ed) Tratado de nutrición. Tomo 3. Nutrición humana en el estado de salud, 2nd edn. Editorial Panamericana, pp 227–256

  17. Ortiz-Espejo M, Pérez-Navero JL, Muñoz-Villanueva MC, Gil Campos M (2013) Nutritional assessment in neonatal and prepubertal children with a history of extrauterine growth restriction. Early Hum Dev. doi:10.1016/j.earlhumdev.2013.06.003

  18. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  19. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  20. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  Google Scholar 

  21. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 25 244(22):6056–6063

    CAS  Google Scholar 

  22. Battino M, Leone L, Bompadre S (2004) High-performance liquid chromatography-EC assay of mitochondrial coenzyme Q9, coenzyme Q9H2, coenzyme Q10, coenzyme Q10H2, and vitamin E with a simplified on-line solid-phase extraction. Methods Enzymol 378:156–162. doi:10.1016/S0076-6879(04)78012-X

    Article  CAS  Google Scholar 

  23. Garcés C, de Oya M (2007) Cardiovascular risk factors in children. Main findings of the four provinces study. Rev Esp Cardiol 60:517–524. doi:10.1016/S0300-8932(07)75069-8

    Article  Google Scholar 

  24. Gupta P, Narang M, Banerjee BD, Basu S (2004) Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatrics 4:14. doi:10.1186/1471-2431-4-14

    Article  Google Scholar 

  25. Perrone S, Tataranno ML, Stazzoni G, Buonocore G (2012) Biomarkers of oxidative stress in fetal and neonatal diseases. J Matern Fetal Neonatal Med 25(12):2575–2578. doi:10.3109/14767058.2012.718004

    Article  CAS  Google Scholar 

  26. Davidge ST, Morton JS, Rueda-Clausen CF (2008) Oxygen and perinatal origins of adulthood diseases: is oxidative stress the unifying element? Hypertension 52:808–810. doi:10.1161/HYPERTENSIONAHA.108.120477

    Article  CAS  Google Scholar 

  27. Mohn A, Chiavaroli V, Cerruto M, Blasetti A, Giannini C, Bucciarelli T, Chiarelli F (2007) Increased oxidative stress in prepubertal children born small for gestational age. J Clin Endocrinol Metab 92:1372–1378. doi:10.1210/jc.2006-1344

    Article  CAS  Google Scholar 

  28. Chiavaroli V, Giannini C, D’Adamo E, de Giorgis T, Chiarelli F, Mohn A (2009) Insulin resistance and oxidative stress in children born small and large for gestational age. Pediatrics 124:695–702. doi:10.1542/peds.2008-3056

    Article  Google Scholar 

  29. Nassi N, Ponziani V, Becatti M, Galvan P, Donzelli G (2009) Anti-oxidant enzymes and related elements in term and preterm newborns. Pediatr Int 51:183–187. doi:10.1111/j.1442-200X.2008.02662.x

    Article  CAS  Google Scholar 

  30. Hracsko Z, Orvos H, Novak Z, Pal A, Varga IS (2008) Evaluation of oxidative stress markers in neonates with intrauterine growth retardation. Redox Rep 13:11–16. doi:10.1179/135100008X259097

    Article  CAS  Google Scholar 

  31. Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu O, Durak I (2007) Role of oxidative stress in intrauterine growth retardation. Gynecol Obstet Invest 64:187–192. doi:10.1159/000106488

    Article  CAS  Google Scholar 

  32. Ahamed M, Mehrotra PK, Kumar P, Siddiqui MK (2009) Placental lead-induced oxidative stress and preterm delivery. Environ Toxicol Pharmacol 27:70–74. doi:10.1016/j.etap.2008.08.013

    Article  CAS  Google Scholar 

  33. McLernon PC, Wood LG, Murphy VE, Hodyl NA, Clifton VL (2012) Circulating antioxidant profile of pregnant women with asthma. Clin Nutr 31:99–107. doi:10.1016/j.clnu.2011.09.006

    Article  CAS  Google Scholar 

  34. Kositamongkol S, Suthutvoravut U, Chongviriyaphan N, Feungpean B, Nuntnarumit P (2011) Vitamin A and E status in very low birth weight infants. J Perinatol 31:471–476. doi:10.1038/jp.2010.155

    Article  CAS  Google Scholar 

  35. Mactier H, Mokaya MM, Farrell L, Edwards CA (2011) Vitamin A provision for preterm infants: are we meeting current guidelines? Arch Dis Child Fetal Neonatal Ed 96:286–289. doi:10.1136/adc.2010.190017

    Article  Google Scholar 

  36. Rubin LP, Chan GM, Barrett-Reis BM, Fulton AB, Hansen RM, Ashmeade TL, Oliver JS, Mackey AD, Dimmit RA, Hartmann EE, Adamkin DH (2012) Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J Perinatol 32:418–424. doi:10.1038/jp.2011.87

    Article  CAS  Google Scholar 

  37. Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB (2011) Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr 141:903–913. doi:10.3945/jn.110.136580

    Article  CAS  Google Scholar 

  38. Yeh SL, Wang HM, Chen PY, Wu TC (2009) Interactions of beta-carotene and flavonoids on the secretion of pro-inflammatory mediators in an in vitro system. Chem Biol Interact 179:386–393. doi:10.1016/j.cbi.2008.12.006

    Article  CAS  Google Scholar 

  39. Suzuki K, Inoue T, Hashimoto S, Ochiai J, Kusuhara Y, Ito Y, Hamajima N (2010) Association of serum carotenoids with high molecular weight adiponectin and inflammation markers among Japanese subjects. Clin Chim Acta 411:1330–1334. doi:10.1016/j.cca.2010.05.029

    Article  CAS  Google Scholar 

  40. Debier C (2007) Vitamin E during pre- and postnatal periods. Vitam Horm 76:357–373. doi:10.1016/S0083-6729(07)76013-2

    Article  CAS  Google Scholar 

  41. Shargorodsky M, Debby O, Matas Z, Zimlichman R (2010) Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors. Nutr Metab (Lond) 7:55. doi:10.1186/1743-7075-7-55

    Article  Google Scholar 

  42. Gharib N, Rasheed P (2011) Energy and macronutrient intake and dietary pattern among school children in Bahrain: a cross-sectional study. Nutr J 10:62. doi:10.1186/1475-2891-10-62

    Article  Google Scholar 

  43. Wiedmeier JE, Joss-Moore LA, Lane RH, Neu J (2011) Early postnatal nutrition and programming of the preterm neonate. Nutr Rev 69(2):76–82. doi:10.1111/j.1753-4887.2010.00370.x

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the 12th Prize for Nutrition Research, awarded by the Spanish Pediatric Association.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Pérez-Navero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Espejo, M., Gil-Campos, M., Mesa, M.D. et al. Alterations in the antioxidant defense system in prepubertal children with a history of extrauterine growth restriction. Eur J Nutr 53, 607–615 (2014). https://doi.org/10.1007/s00394-013-0569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0569-8

Keywords

Navigation