Skip to main content

Advertisement

Log in

Mechanisms underlying the anti-wasting effect of l-carnitine supplementation under pathologic conditions: evidence from experimental and clinical studies

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Loss of skeletal muscle mass, also known as muscle wasting or muscle atrophy, is a common symptom of several chronic diseases, such as cancer and infectious diseases. Due to the strong negative impact of muscle loss on patient’s prognosis and quality of life, the development of efficacious treatment approaches to combat muscle wasting are of great importance. In order to evaluate the suitability of l-carnitine (LC) as an anti-wasting agent for clinical purposes the present review comprehensively summarizes the results from animal and clinical studies showing the effects of supplementation with LC or LC derivatives (acetyl-LC, propionyl-LC) on critical mechanisms involved in skeletal muscle loss under pathologic conditions, such as increased proteolysis, impaired protein synthesis, myonuclear apoptosis, inflammation, oxidative stress, and mitochondrial dysfunction.

Results

Evidence from both animal and clinical studies exists that LC supplementation causes an improved nitrogen balance either due to increased protein synthesis or reduced protein degradation, an inhibition of apoptosis and an abrogation of inflammatory processes under pathologic conditions. Furthermore, strong evidence has been provided, at least from animal studies, that LC supplementation prevents oxidative stress and ameliorates mitochondrial function, whereas results from a very low number of available clinical studies in this regard are inconclusive.

Conclusion

In conclusion, LC supplementation beneficially influences several critical mechanisms involved in pathologic skeletal muscle loss that may at least partially explain the anti-catabolic effects and the improvement of fatigue-related parameters following LC supplementation in patients with chronic diseases. However, more suitable clinical trials (double-blinded, randomized, placebo-controlled, large-scale) are necessary in order to establish LC supplementation as strategy for anti-wasting therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Moldawer LL, Sattler FR (1998) Human immunodeficiency virus-associated wasting and mechanisms of cachexia associated with inflammation. Semin Oncol 25:73–81

    CAS  Google Scholar 

  2. Lenk K, Schuler G, Adams V (2010) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 1:9–21

    Article  Google Scholar 

  3. Remels AH, Gosker HR, Langen RC, Schols AM (2012) The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol [Epub ahead of print]

  4. Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27:793–799

    Article  CAS  Google Scholar 

  5. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ, Horton J, Johnson GJ, Moertel CG, Oken MM, Perlia C, Rosenbaum C, Silverstein MN, Skeel RT, Sponzo RW, Tormey DC (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 69:491–497

    Article  CAS  Google Scholar 

  6. Gramignano G, Lusso MR, Madeddu C, Massa E, Serpe R, Deiana L, Lamonica G, Dessì M, Spiga C, Astara G, Macciò A, Mantovani G (2006) Efficacy of l-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy. Nutrition 22:136–145

    Article  CAS  Google Scholar 

  7. Smith KL, Tisdale MJ (1993) Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br J Cancer 67:680–685

    Article  CAS  Google Scholar 

  8. Tisdale MJ (2008) Catabolic mediators of cancer cachexia. Curr Opin Support Palliat Care 2:256–261

    Article  Google Scholar 

  9. Durham WJ, Dillon EL, Sheffield-Moore M (2009) Inflammatory burden and amino acid metabolism in cancer cachexia. Curr Opin Clin Nutr Metab Care 12:72–77

    Article  CAS  Google Scholar 

  10. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397

    Article  CAS  Google Scholar 

  11. Buck M, Chojkier M (1996) Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 15:1753–1765

    CAS  Google Scholar 

  12. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor alpha. FASEB J 12:871–880

    CAS  Google Scholar 

  13. Pajak B, Orzechowska S, Pijet B, Pijet M, Pogorzelska A, Gajkowska B, Orzechowski A (2008) Crossroads of cytokine signaling–the chase to stop muscle cachexia. J Physiol Pharmacol 59:251–264

    Google Scholar 

  14. Eley HL, Tisdale MJ (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem 282:7087–7097

    Article  CAS  Google Scholar 

  15. Roig E, Perez-Villa F, Morales M, Jiménez W, Orús J, Heras M, Sanz G (2000) Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure. Eur Heart J 21:53–57

    Article  CAS  Google Scholar 

  16. Graziani G, Badalamenti S, Del Bo A, Marabini M, Gazzano G, Como G, Viganò E, Ambroso G, Morganti A (1993) Abnormal hemodynamics and elevated angiotensin II plasma levels in polydipsic patients on regular hemodialysis treatment. Kidney Int 44:107–114

    Article  CAS  Google Scholar 

  17. Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97:2509–2516

    Article  CAS  Google Scholar 

  18. Tabony AM, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, Mitch WE, Delafontaine P (2011) Angiotensin II upregulates protein phosphatase 2Cα and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting. Hypertension 58:643–649

    Article  CAS  Google Scholar 

  19. Busquets S, Serpe R, Toledo M, Betancourt A, Marmonti E, Orpí M, Pin F, Capdevila E, Madeddu C, López-Soriano FJ, Mantovani G, Macciò A, Argilés JM (2012) l-Carnitine: an adequate supplement for a multi-targeted anti-wasting therapy in cancer. Clin Nutr 31:889–895

    Article  CAS  Google Scholar 

  20. Rebouche CJ, Seim H (1998) Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr 18:39–61

    Article  CAS  Google Scholar 

  21. Rebouche CJ (1992) Carnitine function and requirements during the life cycle. FASEB J 6:3379–3386

    CAS  Google Scholar 

  22. Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429

    Article  CAS  Google Scholar 

  23. Rebouche CJ, Lombard KA, Chenard CA (1993) Renal adaptation to dietary carnitine in humans. Am J Clin Nutr 58:660–665

    CAS  Google Scholar 

  24. Rebouche CJ (1983) Effect of dietary carnitine isomers and gamma-butyrobetaine on l-carnitine biosynthesis and metabolism in the rat. J Nutr 113:1906–1913

    CAS  Google Scholar 

  25. Olson AL, Rebouche CJ (1987) γ-Butyrobetaine hydroxylase activity is not rate limiting for carnitine biosynthesis in the human infant. J Nutr 117:1024–1031

    CAS  Google Scholar 

  26. Brass EP (1995) Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clin Ther 17: 176–185, discussion 175

    Google Scholar 

  27. Hiatt WR, Regensteiner JG, Wolfel EE, Ruff L, Brass EP (1989) Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J Clin Invest 84:1167–1173

    Article  CAS  Google Scholar 

  28. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  CAS  Google Scholar 

  29. Uziel G, Garavaglia B, Di Donato S (1988) Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle Nerve 11:720–724

    Article  CAS  Google Scholar 

  30. Ringseis R, Keller J, Eder K (2012) Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 51:1–18

    Article  CAS  Google Scholar 

  31. Winter SC, Buist NR (2000) Cardiomyopathy in childhood, mitochondrial dysfunction, and the role of l-carnitine. Am Heart J 139:S63–S69

    Article  CAS  Google Scholar 

  32. Pons R, De Vivo DC (1995) Primary and secondary carnitine deficiency syndromes. J Child Neurol 10:S8–S24

    Google Scholar 

  33. Duranay M, Akay H, Yilmaz FM, Senes M, Tekeli N, Yücel D (2006) Effects of l-carnitine infusions on inflammatory and nutritional markers in haemodialysis patients. Nephrol Dial Transplant 21:3211–3214

    Article  CAS  Google Scholar 

  34. Steiber AL, Davis AT, Spry L, Strong J, Buss ML, Ratkiewicz MM, Weatherspoon LJ (2006) Carnitine treatment improved quality-of-life measure in a sample of Midwestern hemodialysis patients. JPEN J Parenter Enteral Nutr 30:10–15

    Article  CAS  Google Scholar 

  35. Biolo G, Stulle M, Bianco F, Mengozzi G, Barazzoni R, Vasile A, Panzetta G, Guarnieri G (2008) Insulin action on glucose and protein metabolism during l-carnitine supplementation in maintenance haemodialysis patients. Nephrol Dial Transplant 23:991–997

    Article  CAS  Google Scholar 

  36. Mantovani G, Macciò A, Madeddu C, Gramignano G, Serpe R, Massa E, Dessì M, Tanca FM, Sanna E, Deiana L, Panzone F, Contu P, Floris C (2008) Randomized phase III clinical trial of five different arms of treatment for patients with cancer cachexia: interim results. Nutrition 24:305–313

    Article  CAS  Google Scholar 

  37. Malaguarnera M, Vacante M, Bertino G, Neri S, Malaguarnera M, Gargante MP, Motta M, Lupo L, Chisari G, Bruno CM, Pennisi G, Bella R (2011) The supplementation of acetyl-l-carnitine decreases fatigue and increases quality of life in patients with hepatitis C treated with pegylated interferon-α 2b plus ribavirin. J Interferon Cytokine Res 31:653–659

    Article  CAS  Google Scholar 

  38. Malaguarnera M, Bella R, Vacante M, Giordano M, Malaguarnera G, Gargante MP, Motta M, Mistretta A, Rampello L, Pennisi G (2011) Acetyl-l-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand J Gastroenterol 46:750–759

    Article  CAS  Google Scholar 

  39. Malaguarnera M, Vacante M, Giordano M, Pennisi G, Bella R, Rampello L, Malaguarnera M, Li Volti G, Galvano F (2011) Oral acetyl-l-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 93:799–808

    Article  CAS  Google Scholar 

  40. Winter SC, Szabo-Aczel S, Curry CJ, Hutchinson HT, Hogue R, Shug A (1987) Plasma carnitine deficiency. Clinical observations in 51 pediatric patients. Am J Dis Child 141:660–665

    CAS  Google Scholar 

  41. Vinci E, Rampello E, Zanoli L, Oreste G, Pistone G, Malaguarnera M (2005) Serum carnitine levels in patients with tumoral cachexia. Eur J Intern Med 16:419–423

    Article  CAS  Google Scholar 

  42. Hockenberry MJ, Hooke MC, Gregurich M, McCarthy K (2009) Carnitine plasma levels and fatigue in children/adolescents receiving cisplatin, ifosfamide, or doxorubicin. J Pediatr Hematol Oncol 31:664–669

    Article  CAS  Google Scholar 

  43. De Simone C, Tzantzoglou S, Jirillo E, Marzo A, Vullo V, Martelli EA (1992) l-Carnitine deficiency in AIDS patients. AIDS 6:203–205

    Article  Google Scholar 

  44. Visarius TM, Stucki JW, Lauterburg BH (1999) Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats. J Pharmacol Exp Ther 289:820–824

    CAS  Google Scholar 

  45. Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, Zuo Z, Loos WJ, Sparreboom A (2010) Cisplatin-induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res 16:4789–4799

    Article  CAS  Google Scholar 

  46. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129:S227–S237

    Google Scholar 

  47. Lecker SH, Solomon V, Price SR, Kwon YT, Mitch WE, Goldberg AL (1999) Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 104:1411–1420

    Article  CAS  Google Scholar 

  48. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    CAS  Google Scholar 

  49. Attaix D, Combaret L, Kee AJ (2003) Thaillandier D (2003) Mechanisms of ubiquitination and proteasome-dependent proteolysis in skeletal muscle. In: Zempleni J, Daniel H (eds) Molecular nutrition. CABI Publishing, Wallingford, pp 219–235

    Chapter  Google Scholar 

  50. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  Google Scholar 

  51. Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335

    Article  CAS  Google Scholar 

  52. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  Google Scholar 

  53. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445

    Article  CAS  Google Scholar 

  54. Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27:1266–1276

    Article  CAS  Google Scholar 

  55. Lagirand-Cantaloube J, Cornille K, Csibi A, Batonnet-Pichon S, Leibovitch MP, Leibovitch SA (2009) Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS ONE 4:e4973

    Article  CAS  Google Scholar 

  56. Csibi A, Leibovitch MP, Cornille K, Tintignac LA, Leibovitch SA (2009) MAFbx/Atrogin-1 controls the activity of the initiation factor eIF3-f in skeletal muscle atrophy by targeting multiple C-terminal lysines. J Biol Chem 284:4413–4421

    Article  CAS  Google Scholar 

  57. Csibi A, Cornille K, Leibovitch MP et al (2010) The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse. PLoS ONE 5:e8994

    Article  CAS  Google Scholar 

  58. Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1:4

    Article  CAS  Google Scholar 

  59. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96:857–868

    Article  CAS  Google Scholar 

  60. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  CAS  Google Scholar 

  61. Ringseis R, Keller J, Lukas I, Spielmann J, Most E, Couturier A, König B, Hirche F, Stangl GI, Wen G, Eder K (2012) Treatment with pharmacological PPARα agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents. Biochim Biophys Acta 1830:2105–2117

    Article  CAS  Google Scholar 

  62. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119:285–298

    Article  CAS  Google Scholar 

  63. Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB (2005) TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 19:362–370

    Article  CAS  Google Scholar 

  64. Langen RC, Haegens A, Vernooy JH, Wouters EF, de Winther MP, Carlsen H, Steele C, Shoelson SE, Schols AM (2012) NF-κB activation is required for the transition of pulmonary inflammation to muscle atrophy. Am J Respir Cell Mol Biol 47:288–297

    Article  CAS  Google Scholar 

  65. Morley JE, Thomas DR, Wilson MM (2006) Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83:735–743

    CAS  Google Scholar 

  66. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170

    Article  CAS  Google Scholar 

  67. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    Article  CAS  Google Scholar 

  68. van Royen M, Carbó N, Busquets S, Alvarez B, Quinn LS, López-Soriano FJ, Argilés JM (2000) DNA fragmentation occurs in skeletal muscle during tumor growth: a link with cancer cachexia? Biochem Biophys Res Commun 270:533–537

    Article  CAS  Google Scholar 

  69. Busquets S, Deans C, Figueras M, Moore-Carrasco R, López-Soriano FJ, Fearon KC, Argilés JM (2007) Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr 26:614–618

    Article  CAS  Google Scholar 

  70. Agustí AG, Sauleda J, Miralles C, Gomez C, Togores B, Sala E, Batle S, Busquets X (2002) Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166:485–489

    Article  Google Scholar 

  71. Dupont-Versteegden EE, Strotman BA, Gurley CM, Gaddy D, Knox M, Fluckey JD, Peterson CA (2006) Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei. Am J Physiol Regul Integr Comp Physiol 291:1730–1740

    Article  CAS  Google Scholar 

  72. Dupont-Versteegden EE (2006) Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 12:7463–7466

    CAS  Google Scholar 

  73. Primeau AJ, Adhihetty PJ, Hood DA (2002) Apoptosis in heart and skeletal muscle. Can J Appl Physiol 27:349–395

    Article  CAS  Google Scholar 

  74. Argilés JM, López-Soriano FJ, Busquets S (2008) Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions. Int J Biochem Cell Biol 40:1674–1678

    Article  CAS  Google Scholar 

  75. Argilés JM, Busquets S, Toledo M, López-Soriano FJ (2009) The role of cytokines in cancer cachexia. Curr Opin Support Palliat Care 3:263–268

    Article  Google Scholar 

  76. Adams V, Linke A, Wisloff U, Döring C, Erbs S, Kränkel N, Witt CC, Labeit S, Müller-Werdan U, Schuler G, Hambrecht R (2007) Myocardial expression of Murf-1 and MAFbx after induction of chronic heart failure: effect on myocardial contractility. Cardiovasc Res 73:120–129

    Article  CAS  Google Scholar 

  77. Wyke SM, Tisdale MJ (2005) NF-κB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br J Cancer 92:711–721

    Article  CAS  Google Scholar 

  78. Olson EN, Klein WH (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8:1–8

    Article  CAS  Google Scholar 

  79. Adams V, Nehrhoff B, Späte U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G (2002) Induction of iNOS expression in skeletal muscle by IL-1beta and NF-κB activation: an in vitro and in vivo study. Cardiovasc Res 54:95–104

    Article  CAS  Google Scholar 

  80. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57

    Article  CAS  Google Scholar 

  81. Van Helvoort HA, Heijdra YF, Thijs HM, Viña J, Wanten GJ, Dekhuijzen PN (2006) Exercise-induced systemic effects in muscle-wasted patients with COPD. Med Sci Sports Exerc 38:1543–1552

    Article  CAS  Google Scholar 

  82. Li YP, Chen Y, Li AS, Reid MB (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285:C806–C812

    Article  CAS  Google Scholar 

  83. White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA (2011) Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol 300:201–211

    Article  CAS  Google Scholar 

  84. Constantinou C, Fontes de Oliveira CC, Mintzopoulos D, Busquets S, He J, Kesarwani M, Mindrinos M, Rahme LG, Argilés JM, Tzika AA (2011) Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int J Mol Med 27:15–24

    CAS  Google Scholar 

  85. Padfield KE, Astrakas LG, Zhang Q, Gopalan S, Dai G, Mindrinos MN, Tompkins RG, Rahme LG, Tzika AA (2005) Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci U S A 102:5368–5373

    Article  CAS  Google Scholar 

  86. Tzika AA, Mintzopoulos D, Padfield K, Wilhelmy J, Mindrinos MN, Yu H, Cao H, Zhang Q, Astrakas LG, Zhang J, Yu YM, Rahme LG, Tompkins RG (2008) Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn. Int J Mol Med 221:201–208

    Google Scholar 

  87. Vescovo G, Ravara B, Gobbo V, Sandri M, Angelini A, Della Barbera M, Dona M, Peluso G, Calvani M, Mosconi L, Dalla Libera L (2002) l-Carnitine: a potential treatment for blocking apoptosis and preventing skeletal muscle myopathy in heart failure. Am J Physiol Cell Physiol 283:802–810

    Article  Google Scholar 

  88. Keller J, Ringseis R, Koc A, Lukas I, Kluge H, Eder K (2012) Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal 6:70–78

    Article  CAS  Google Scholar 

  89. Doberenz J, Birkenfeld C, Kluge H, Eder K (2006) Effects of l-carnitine supplementation in pregnant sows on plasma concentrations of insulin-like growth factors, various hormones and metabolites and chorion characteristics. J Anim Physiol Anim Nutr (Berl) 90:487–499

    Article  CAS  Google Scholar 

  90. Woodworth JC, Tokach MD, Nelssen JL, Goodband RD, Dritz SS et al (2007) Influence of dietary l-carnitine and chromium picolinate on blood hormones and metabolites of gestating sows fed one meal per day. J Anim Sci 85:2524–2537

    Article  CAS  Google Scholar 

  91. Brown KR, Goodband RD, Tokach MD, Dritz SS, Nelssen JL et al (2008) Effects of feeding l-carnitine to gilts through day 70 of gestation on litter traits and the expression of insulin-like growth factor system components and l-carnitine concentration in foetal tissues. J Anim Physiol Anim Nutr (Berl) 92:660–667

    Article  CAS  Google Scholar 

  92. Keller J, Ringseis R, Priebe S, Guthke R, Kluge H et al (2011) Dietary l-carnitine alters gene expression in skeletal muscle of piglets. Mol Nutr Food Res 55:419–429

    Article  CAS  Google Scholar 

  93. Ahmad S, Robertson HT, Golper TA, Wolfson M, Kurtin P, Katz LA, Hirschberg R, Nicora R, Ashbrook DW, Kopple JD (1990) Multicenter trial of l-carnitine in maintenance hemodialysis patients. II. Clinical and biochemical effects. Kidney Int 38:912–918

    Article  CAS  Google Scholar 

  94. Heller W, Musil HE, Gaebel G, Hempel V, Krug W, Köhn HJ (1986) Effect of l-carnitine on post-stress metabolism in surgical patients. Infusionsther Klin Ernahr 13:268–276

    CAS  Google Scholar 

  95. Rössle C, Pichard C, Roulet M, Chiolero R, Schutz Y, Temler E, Schindler C, Zurlo F, Jéquier E, Fürst P (1988) Effect of l-carnitine supplemented total parenteral nutrition on postoperative lipid and nitrogen utilization. Klin Wochenschr 66:1202–1211

    Article  Google Scholar 

  96. Pichard C, Roulet M, Schutz Y, Rössle C, Chiolero R, Temler E, Schindler C, Zurlo F, Fürst P, Jéquier E (1989) Clinical relevance of l-carnitine-supplemented total parenteral nutrition in postoperative trauma. Metabolic effects of continuous or acute carnitine administration with special reference to fat oxidation and nitrogen utilization. Am J Clin Nutr 49:283–289

    CAS  Google Scholar 

  97. Roulet M, Pichard C, Rössle C, Bretenstein E, Schutz Y, Chiolero R, Fürst P, Jéquier E (1989) Adverse effects of high dose carnitine supplementation of total parenteral nutrition on protein and fat oxidation in the critically ill. Clin Nutr 8:83–87

    Article  CAS  Google Scholar 

  98. Tao RC, Peck GK, Yoshimura NN (1981) Effect of carnitine on liver fat and nitrogen balance in intravenously fed growing rats. J Nutr 111:171–177

    CAS  Google Scholar 

  99. Vazquez JA, Paul HS, Adibi SA (1988) Intravenously infused carnitine: influence on protein and branched-chain amino acid metabolism in starved and parenterally fed rats. Am J Clin Nutr 48:570–574

    CAS  Google Scholar 

  100. Bohles H, Segerer H, Fekl W (1984) Improved N-retention during l-carnitine-supplemented total parenteral nutrition. JPEN J Parenter Enteral Nutr 8:9–13

    Article  CAS  Google Scholar 

  101. Cassano P, Flück M, Giovanna Sciancalepore A, Pesce V, Calvani M, Hoppeler H, Cantatore P, Gadaleta MN (2010) Muscle unloading potentiates the effects of acetyl-l-carnitine on the slow oxidative muscle phenotype. BioFactors 36:70–77

    CAS  Google Scholar 

  102. Moriggi M, Cassano P, Vasso M, Capitanio D, Fania C, Musicco C, Pesce V, Gadaleta MN, Gelfi C (2008) A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-l-carnitine supplementation. Proteomics 8:3588–3604

    Article  CAS  Google Scholar 

  103. Heo K, Odle J, Han IK, Cho W, Seo S, van Heugten E, Pilkington DH (2000) Dietary l-carnitine improves nitrogen utilization in growing pigs fed low energy, fat-containing diets. J Nutr 130:1809–1814

    CAS  Google Scholar 

  104. Greenwood RH, Titgemeyer EC, Stokka GL, Drouillard JS, Löest CA (2001) Effects of l-carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers. J Anim Sci 79:254–260

    CAS  Google Scholar 

  105. Musser RE, Goodband RD, Tokach MD, Owen KQ, Nelssen JL, Blum SA, Campbell RG, Smits R, Dritz SS, Civis CA (1999) Effects of l-carnitine fed during lactation on sow and litter performance. J Anim Sci 77:3289–3295

    CAS  Google Scholar 

  106. Kita K, Kato S, Amanyaman M, Okumura J, Yokota H (2002) Dietary l-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br Poult Sci 43:117–121

    Article  CAS  Google Scholar 

  107. Heo YR, Kang CW, Cha YS (2001) l-Carnitine changes the levels of insulin-like growth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J Nutr Sci Vitaminol (Tokyo) 47:329–334

    Article  CAS  Google Scholar 

  108. Di Marzio L, Moretti S, D’Alò S, Zazzeroni F, Marcellini S, Smacchia C, Alesse E, Cifone MG, De Simone C (1999) Acetyl-l-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin Immunol 92:103–110

    Article  CAS  Google Scholar 

  109. Beshlawy AE, Abd El Dayem SM, Mougy FE, Gafar EA, Samir H (2010) Screening of growth hormone deficiency in short thalassaemic patients and effect of l-carnitine treatment. Arch Med Sci 6:90–95

    Article  CAS  Google Scholar 

  110. Galloway SD, Craig TP, Cleland SJ (2011) Effects of oral: l-carnitine supplementation on insulin sensitivity indices in response to glucose feeding in lean and overweight/obese males. Amino Acids 41:507–515

    Article  CAS  Google Scholar 

  111. Bellinghieri G, Savica V, Mallamace A, Di Stefano C, Consolo F, Spagnoli LG, Villaschi S, Palmieri G, Corsi M, Maccari F (1983) Correlation between increased serum and tissue l-carnitine levels and improved muscle symptoms in hemodialyzed patients. Am J Clin Nutr 38:523–531

    CAS  Google Scholar 

  112. Fagher B, Cederblad G, Eriksson M, Monti M, Moritz U, Nilsson-Ehle P, Thysell H (1985) l-Carnitine and haemodialysis: double blind study on muscle function and metabolism and peripheral nerve function. Scand J Clin Lab Invest 45:169–178

    Article  CAS  Google Scholar 

  113. Vaux EC, Taylor DJ, Altmann P, Rajagopalan B, Graham K, Cooper R, Bonomo Y, Styles P (2004) Effects of carnitine supplementation on muscle metabolism by the use of magnetic resonance spectroscopy and near-infrared spectroscopy in end-stage renal disease. Nephron Clin Pract 97:41–48

    Article  CAS  Google Scholar 

  114. Spagnoli LG, Palmieri G, Mauriello A, Vacha GM, D’Iddio S, Giorcelli G, Corsi M (1990) Morphometric evidence of the trophic effect of l-carnitine on human skeletal muscle. Nephron 55:16–23

    Article  CAS  Google Scholar 

  115. Giovenali P, Fenocchio D, Montanari G, Cancellotti C, D’Iddio S, Buoncristiani U, Pelagaggia M, Ribacchi R (1994) Selective trophic effect of l-carnitine in type I and IIa skeletal muscle fibers. Kidney Int 46:1616–1619

    Article  CAS  Google Scholar 

  116. Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798

    CAS  Google Scholar 

  117. Sener G, Ekşioğlu-Demiralp E, Cetiner M, Ercan F, Sirvanci S, Gedik N, Yeğen BC (2006) l-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biol Toxicol 22:47–60

    Article  CAS  Google Scholar 

  118. Therrien G, Rose C, Butterworth J, Butterworth RF (1997) Protective effect of l-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat. Hepatology 25:551–556

    Article  CAS  Google Scholar 

  119. Galli G, Fratelli M (1993) Activation of apoptosis by serum deprivation in a teratocarcinoma cell line: inhibition by l-acetylcarnitine. Exp Cell Res 204:54–60

    Article  CAS  Google Scholar 

  120. Revoltella RP, Dal Canto B, Caracciolo L, D’Urso CM (1994) l-Carnitine and some of its analogs delay the onset of apoptotic cell death initiated in murine C2.8 hepatocytic cells after hepatocyte growth factor deprivation. Biochim Biophys Acta 1224:333–341

    Article  Google Scholar 

  121. Di Marzio L, Alesse E, Roncaioli P, Muzi P, Moretti S, Marcellini S, Amicosante G, De Simone C, Cifone MG (1997) Influence of l-carnitine on CD95 cross-lining-induced apoptosis and ceramide generation in human cell lines: correlation with its effects on purified acidic and neutral sphingomyelinases in vitro. Proc Assoc Am Physicians 109:154–163

    Google Scholar 

  122. Kira Y, Nishikawa M, Ochi A, Sato E, Inoue M (2006) l-Carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070:206–214

    Article  CAS  Google Scholar 

  123. Tamilselvan J, Jayaraman G, Sivarajan K, Panneerselvam C (2007) Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med 43:1656–1669

    Article  CAS  Google Scholar 

  124. Andrieu-Abadie N, Jaffrezou JP, Hatem S, Laurent G, Levade T, Mercadier JJ (1999) l-Carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: role of inhibition of ceramide generation. FASEB J 13:1501–1510

    CAS  Google Scholar 

  125. Oyanagi E, Yano H, Uchida M, Utsumi K, Sasaki J (2011) Protective action of l-carnitine on cardiac mitochondrial function and structure against fatty acid stress. Biochem Biophys Res Commun 412:61–67

    Article  CAS  Google Scholar 

  126. Chao HH, Liu JC, Hong HJ, Lin JW, Chen CH, Cheng TH (2011) l-Carnitine reduces doxorubicin-induced apoptosis through a prostacyclin-mediated pathway in neonatal rat cardiomyocytes. Int J Cardiol 146:145–152

    Article  Google Scholar 

  127. Cui J, Das DK, Bertelli A, Tosaki A (2003) Effects of l-carnitine and its derivatives on postischemic cardiac function, ventricular fibrillation and necrotic and apoptotic cardiomyocyte death in isolated rat hearts. Mol Cell Biochem 254:227–234

    Article  CAS  Google Scholar 

  128. Cifone MG, Alesse E, Di Marzio L, Ruggeri B, Zazzeroni F, Moretti S, Famularo G, Steinberg SM, Vullo E, De Simone C (1997) Effect of l-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc Assoc Am Physicians 109:146–153

    CAS  Google Scholar 

  129. Cossarizza A, Mussini C, Mongiardo N, Borghi V, Sabbatini A, De Rienzo B, Franceschi C (1997) Mitochondria alterations and dramatic tendency to undergo apoptosis in peripheral blood lymphocytes during acute HIV syndrome. AIDS 11:19–26

    Article  CAS  Google Scholar 

  130. Moretti S, Alesse E, Di Marzio L, Zazzeroni F, Ruggeri B, Marcellini S, Famularo G, Steinberg SM, Boschini A, Cifone MG, De Simone C (1998) Effect of l-carnitine on human immunodeficiency virus-1 infection-associated apoptosis: a pilot study. Blood 91:3817–3824

    CAS  Google Scholar 

  131. Moretti S, Famularo G, Marcellini S, Boschini A, Santini G, Trinchieri V, Lucci L, Alesse E, De Simone C (2002) l-Carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid Redox Signal 4:391–403

    Article  CAS  Google Scholar 

  132. Rodriguez-Tarduchy G, Collins MK, García I, López-Rivas A (1992) Insulin-like growth factor-I inhibits apoptosis in IL-3-dependent hemopoietic cells. J Immunol 149:535–540

    CAS  Google Scholar 

  133. De Simone C, Tzantzoglou S, Famularo G, Moretti S, Paoletti F, Vullo V, Delia S (1993) High dose l-carnitine improves immunologic and metabolic parameters in AIDS patients. Immunopharmacol Immunotoxicol 15:1–12

    Article  Google Scholar 

  134. De Simone C, Famularo G, Tzantzoglou S, Trinchieri V, Moretti S, Sorice F (1994) Carnitine depletion in peripheral blood mononuclear cells from patients with AIDS: effect of oral l-carnitine. AIDS 8:655–660

    Article  Google Scholar 

  135. Miguel-Carrasco JL, Mate A, Monserrat MT, Arias JL, Aramburu O, Vázquez CM (2008) The role of inflammatory markers in the cardioprotective effect of l-carnitine in l-NAME-induced hypertension. Am J Hypertens 21:1231–1237

    Article  CAS  Google Scholar 

  136. Winter BK, Fiskum G, Gallo LL (1995) Effects of l-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer 72:1173–1179

    Article  CAS  Google Scholar 

  137. Idrovo JP, Yang WL, Matsuda A, Nicastro J, Coppa GF, Wang P (2012) Post-treatment with the combination of 5-aminoimidazole-4-carboxyamide ribonucleoside and carnitine improves renal function after ischemia/reperfusion injury. Shock 37:39–46

    Article  CAS  Google Scholar 

  138. Laviano A, Molfino A, Seelaender M, Frascaria T, Bertini G, Ramaccini C, Bollea MR, Citro G, Rossi Fanelli F (2011) Carnitine administration reduces cytokine levels, improves food intake, and ameliorates body composition in tumor-bearing rats. Cancer Invest 29:696–700

    Article  CAS  Google Scholar 

  139. Liu S, Wu HJ, Zhang ZQ, Chen Q, Liu B, Wu JP, Zhu L (2011) l-Carnitine ameliorates cancer cachexia in mice by regulating the expression and activity of carnitine palmityl transferase. Cancer Biol Ther 12:125–130

    Article  CAS  Google Scholar 

  140. Malaguarnera M, Gargante MP, Russo C, Antic T, Vacante M, Malaguarnera M, Avitabile T, Li Volti G, Galvano F (2010) l-Carnitine supplementation to diet: a new tool in treatment of nonalcoholic steatohepatitis—a randomized and controlled clinical trial. Am J Gastroenterol 105:1338–1345

    Article  CAS  Google Scholar 

  141. Delogu G, De Simone C, Famularo G, Fegiz A, Paoletti F, Jirillo E (1993) Anaesthetics modulate tumour necrosis factor alpha: effects of l-carnitine supplementation in surgical patients. Preliminary results. Mediators Inflamm 2:33–36

    Article  Google Scholar 

  142. Savica V, Santoro D, Mazzaglia G, Ciolino F, Monardo P, Calvani M, Bellinghieri G, Kopple JD (2005) l-Carnitine infusions may suppress serum C-reactive protein and improve nutritional status in maintenance hemodialysis patients. J Ren Nutr 15:225–230

    Article  Google Scholar 

  143. Shakeri A, Tabibi H, Hedayati M (2010) Effects of l-carnitine supplement on serum inflammatory cytokines, C-reactive protein, lipoprotein (a), and oxidative stress in hemodialysis patients with Lp (a) hyperlipoproteinemia. Hemodial Int 14:498–504

    Article  Google Scholar 

  144. Suchitra MM, Ashalatha VL, Sailaja E, Rao AM, Reddy VS, Bitla AR, Sivakumar V, Rao PV (2011) The effect of l-carnitine supplementation on lipid parameters, inflammatory and nutritional markers in maintenance hemodialysis patients. Saudi J Kidney Dis Transpl 22:1155–1159

    CAS  Google Scholar 

  145. Derosa G, Maffioli P, Ferrari I, D’Angelo A, Fogari E, Palumbo I, Randazzo S, Cicero AF (2010) Orlistat and l-carnitine compared to orlistat alone on insulin resistance in obese diabetic patients. Endocr J 57:777–786

    Article  CAS  Google Scholar 

  146. Kumar A, Singh RB, Saxena M, Niaz MA, Josh SR, Chattopadhyay P, Mechirova V, Pella D, Fedacko J (2007) Effect of carni Q-gel (ubiquinol and carnitine) on cytokines in patients with heart failure in the Tishcon study. Acta Cardiol 62:349–354

    Article  Google Scholar 

  147. Dutta A, Ray K, Singh VK, Vats P, Singh SN, Singh SB (2008) l-Carnitine supplementation attenuates intermittent hypoxia-induced oxidative stress and delays muscle fatigue in rats. Exp Physiol 93:1139–1146

    Article  CAS  Google Scholar 

  148. Rajasekar P, Anuradha CV (2007) l-Carnitine inhibits protein glycation in vitro and in vivo: evidence for a role in diabetic management. Acta Diabetol 44:83–90

    Article  CAS  Google Scholar 

  149. Breitkreutz R, Babylon A, Hack V, Schuster K, Tokus M, Böhles H, Hagmüller E, Edler L, Holm E, Dröge W (2000) Effect of carnitine on muscular glutamate uptake and intramuscular glutathione in malignant diseases. Br J Cancer 82:399–403

    Article  CAS  Google Scholar 

  150. Al-Majed AA, Sayed-Ahmed MM, Al-Yahya AA, Aleisa AM, Al-Rejaie SS, Al-Shabanah OA (2006) Propionyl-l-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol Res 53:278–286

    Article  CAS  Google Scholar 

  151. Alvarez M, Malécot CO, Gannier F, Lignon JM (2005) Antimony-induced cardiomyopathy in guinea-pig and protection by l-carnitine. Br J Pharmacol 144:17–27

    Article  CAS  Google Scholar 

  152. Annadurai T, Vigneshwari S, Thirukumaran R, Thomas PA, Geraldine P (2011) Acetyl-l-carnitine prevents carbon tetrachloride-induced oxidative stress in various tissues of Wistar rats. J Physiol Biochem 67:519–530

    Article  CAS  Google Scholar 

  153. Sayed-Ahmed MM (2011) l-Carnitine attenuates ifosfamide-induced carnitine deficiency and decreased intramitochondrial CoA-SH in rat kidney tissues. J Nephrol 24:490–498

    Article  CAS  Google Scholar 

  154. Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of l-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  CAS  Google Scholar 

  155. Türker Y, Nazıroğlu M, Gümral N, Celik O, Saygın M, Cömlekçi S, Flores-Arce M (2011) Selenium and l-carnitine reduce oxidative stress in the heart of rat induced by 2.45 GHz radiation from wireless devices. Biol Trace Elem Res 143:1640–1650

    Article  CAS  Google Scholar 

  156. Naziroğlu M, Gümral N (2009) Modulator effects of l-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 85:680–689

    Article  CAS  Google Scholar 

  157. Gumral N, Naziroglu M, Koyu A, Ongel K, Celik O, Saygin M, Kahriman M, Caliskan S, Kayan M, Gencel O, Flores-Arce MF (2009) Effects of selenium and l-carnitine on oxidative stress in blood of rat induced by 2.45 GHz radiation from wireless devices. Biol Trace Elem Res 132:153–163

    Article  CAS  Google Scholar 

  158. Alshabanah OA, Hafez MM, Al-Harbi MM, Hassan ZK, Al Rejaie SS, Asiri YA, Sayed-Ahmed MM (2010) Doxorubicin toxicity can be ameliorated during antioxidant l-carnitine supplementation. Oxid Med Cell Longev 3:428–433

    Article  Google Scholar 

  159. Moosavi SM, Ashtiyani SC, Hosseinkhani S, Shirazi M (2010) Comparison of the effects of l-carnitine and α-tocopherol on acute ureteral obstruction-induced renal oxidative imbalance and altered energy metabolism in rats. Urol Res 38:187–194

    Article  CAS  Google Scholar 

  160. Moosavi SM, Ashtiyani SC, Hosseinkhani S (2011) l-Carnitine improves oxidative stress and suppressed energy metabolism but not renal dysfunction following release of acute unilateral ureteral obstruction in rat. Neurourol Urodyn 30:480–487

    Article  CAS  Google Scholar 

  161. Aleisa AM, Al-Majed AA, Al-Yahya AA, Al-Rejaie SS, Bakheet SA, Al-Shabanah OA, Sayed-Ahmed MM (2007) Reversal of cisplatin-induced carnitine deficiency and energy starvation by propionyl-l-carnitine in rat kidney tissues. Clin Exp Pharmacol Physiol 34:1252–1259

    Article  CAS  Google Scholar 

  162. Tastekin N, Aydogdu N, Dokmeci D, Usta U, Birtane M, Erbas H, Ture M (2007) Protective effects of l-carnitine and alpha-lipoic acid in rats with adjuvant arthritis. Pharmacol Res 56:303–310

    Article  CAS  Google Scholar 

  163. Yapar K, Kart A, Karapehlivan M, Atakisi O, Tunca R, Erginsoy S, Citil M (2007) Hepatoprotective effect of l-carnitine against acute acetaminophen toxicity in mice. Exp Toxicol Pathol 59:121–128

    Article  CAS  Google Scholar 

  164. Augustyniak A, Skrzydlewska E (2009) l-Carnitine in the lipid and protein protection against ethanol-induced oxidative stress. Alcohol 43:217–223

    Article  CAS  Google Scholar 

  165. Augustyniak A, Skrzydlewska E (2010) The influence of l-carnitine supplementation on the antioxidative abilities of serum and the central nervous system of ethanol-induced rats. Metab Brain Dis 25:381–389

    Article  CAS  Google Scholar 

  166. Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, Ali SF, Santamaría A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l-carnitine. J Neurochem 105:677–689

    Article  CAS  Google Scholar 

  167. Mate A, Miguel-Carrasco JL, Vázquez CM (2010) The therapeutic prospects of using l-carnitine to manage hypertension-related organ damage. Drug Discov Today 15:484–492

    Article  CAS  Google Scholar 

  168. Miguel-Carrasco JL, Monserrat MT, Mate A, Vázquez CM (2010) Comparative effects of captopril and l-carnitine on blood pressure and antioxidant enzyme gene expression in the heart of spontaneously hypertensive rats. Eur J Pharmacol 632:65–72

    Article  CAS  Google Scholar 

  169. Shaker ME, Houssen ME, Abo-Hashem EM, Ibrahim TM (2009) Comparison of vitamin E, l-carnitine and melatonin in ameliorating carbon tetrachloride and diabetes induced hepatic oxidative stress. J Physiol Biochem 65:225–233

    Article  CAS  Google Scholar 

  170. Fatouros IG, Douroudos I, Panagoutsos S, Pasadakis P, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Michailidis Y, Jamurtas AZ, Mandalidis D, Taxildaris K, Vargemezis V (2010) Effects of l-carnitine on oxidative stress responses in patients with renal disease. Med Sci Sports Exerc 42:1809–1818

    Article  CAS  Google Scholar 

  171. Malaguarnera M, Vacante M, Avitabile T, Malaguarnera M, Cammalleri L, Motta M (2009) l-Carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes. Am J Clin Nutr 89:71–76

    Article  CAS  Google Scholar 

  172. Pignatelli P, Tellan G, Marandola M, Carnevale R, Loffredo L, Schillizzi M, Proietti M, Violi F, Chirletti P, Delogu G (2011) Effect of l-carnitine on oxidative stress and platelet activation after major surgery. Acta Anaesthesiol Scand 55:1022–1028

    CAS  Google Scholar 

  173. Paradies G, Ruggiero FM, Gadaleta MN, Quagliariello E (1992) The effect of aging and acetyl-l-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria. Biochim Biophys Acta 1103:324–326

    Article  CAS  Google Scholar 

  174. Gadaleta MN, Petruzzella V, Renis M, Fracasso F, Cantatore P (1990) Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of l-carnitine. Eur J Biochem 187:501–506

    Article  CAS  Google Scholar 

  175. Dowson JH, Wilton-Cox H, Cairns MR, Ramacci MT (1992) The morphology of lipopigment in rat Purkinje neurons after chronic acetyl-l-carnitine administration: a reduction in aging-related changes. Biol Psychiatry 32:179–187

    Article  CAS  Google Scholar 

  176. Amenta F, Ferrante F, Lucreziotti R, Ricci A, Ramacci MT (1989) Reduced lipofuscin accumulation in senescent rat brain by long-term acetyl-l-carnitine treatment. Arch Gerontol Geriatr 9:147–153

    Article  CAS  Google Scholar 

  177. Ghirardi O, Caprioli A, Milano S, Giuliani A, Ramacci MT, Angelucci L (1992) Active avoidance learning in old rats chronically treated with levocarnitine acetyl. Physiol Behav 52:185–187

    Article  CAS  Google Scholar 

  178. Aureli T, Miccheli A, Ricciolini R, Di Cocco ME, Ramacci MT, Angelucci L, Ghirardi O, Conti F (1990) Aging brain: effect of acetyl-l-carnitine treatment on rat brain energy and phospholipid metabolism. A study by 31P and 1H NMR spectroscopy. Brain Res 526:108–112

    Article  CAS  Google Scholar 

  179. Rabchevsky AG, Patel SP, Springer JE (2011) Pharmacological interventions for spinal cord injury: where do we stand? How might we step forward? Pharmacol Ther 132:15–29

    Article  CAS  Google Scholar 

  180. Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290

    Article  CAS  Google Scholar 

  181. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24:991–999

    Article  Google Scholar 

  182. Patel BP, Hamadeh MJ (2009) Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clin Nutr 28:604–617

    Article  CAS  Google Scholar 

  183. McEwen ML, Sullivan PG, Springer JE (2007) Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats. J Neurotrauma 24:613–624

    Article  Google Scholar 

  184. Patel SP, Sullivan PG, Lyttle TS, Rabchevsky AG (2010) Acetyl-l-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. J Neurochem 114:291–301

    CAS  Google Scholar 

  185. Patel SP, Sullivan PG, Lyttle TS, Magnuson DS, Rabchevsky AG (2012) Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 210:296–307

    Article  CAS  Google Scholar 

  186. Aureli T, Di Cocco ME, Capuani G, Ricciolini R, Manetti C, Miccheli A, Conti F (2000) Effect of long-term feeding with acetyl-l-carnitine on the age-related changes in rat brain lipid composition: a study by 31P NMR spectroscopy. Neurochem Res 25:395–399

    Article  CAS  Google Scholar 

  187. Hao J, Shen W, Sun L, Long J, Sharman E, Shi X, Liu J (2011) Mitochondrial dysfunction in the liver of type 2 diabetic Goto-Kakizaki rats: improvement by a combination of nutrients. Br J Nutr 106:648–655

    Article  CAS  Google Scholar 

  188. Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M (2002) l-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 405:55–64

    Article  CAS  Google Scholar 

  189. Furuno T, Kanno T, Arita K, Asami M, Utsumi T, Doi Y, Inoue M, Utsumi K (2001) Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol 62:1037–1046

    Article  CAS  Google Scholar 

  190. Luo X, Reichetzer B, Trines J, Benson LN, Lehotay DC (1999) l-Carnitine attenuates doxorubicin-induced lipid peroxidation in rats. Free Radic Biol Med 26:1158–1165

    Article  CAS  Google Scholar 

  191. Arafa HM, Hemeida RA, Hassan MI, Abdel-Wahab MH, Badary OA, Hamada FM (2009) Acetyl-l-carnitine ameliorates caerulein-induced acute pancreatitis in rats. Basic Clin Pharmacol Toxicol 105:30–36

    Article  CAS  Google Scholar 

  192. Tufekci O, Gunes D, Ozoğul C, Kolatan E, Altun Z, Yilmaz O, Aktaş S, Erbayraktar Z, Kirkim G, Mutafoğlu K, Soylu A, Serbetçioğlu B, Güneri EA, Olgun N (2009) Evaluation of the effect of acetyl l-carnitine on experimental cisplatin nephrotoxicity. Chemotherapy 55:451–459

    Article  CAS  Google Scholar 

  193. Hota KB, Hota SK, Chaurasia OP, Singh SB (2012) Acetyl-l-carnitine-mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22:723–736

    Article  CAS  Google Scholar 

  194. Mingorance C, Duluc L, Chalopin M, Simard G, Ducluzeau PH, Herrera MD, Alvarez de Sotomayor M, Andriantsitohaina R (2012) Propionyl-l-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PLoS ONE 7:e34268

    Article  CAS  Google Scholar 

  195. Shen W, Hao J, Tian C, Ren J, Yang L, Li X, Luo C, Cotma CW, Liu J (2008) A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. PLoS ONE 3:e2328

    Article  CAS  Google Scholar 

  196. El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-l-carnitine. Am J Physiol 272:1615–1624

    Google Scholar 

  197. Pasini E, Cargnoni A, Condorelli E, Marzo A, Lisciani R, Ferrari R (1992) Effect of prolonged treatment with propionyl-l-carnitine on erucic acid-induced myocardial dysfunction in rats. Mol Cell Biochem 112:117–123

    Article  CAS  Google Scholar 

  198. Milazzo L, Menzaghi B, Caramma I, Nasi M, Sangaletti O, Cesari M, Zanone Poma B, Cossarizza A, Antinori S, Galli M (2010) Effect of antioxidants on mitochondrial function in HIV-1-related lipoatrophy: a pilot study. AIDS Res Hum Retroviruses 26:1207–1214

    Article  CAS  Google Scholar 

  199. Thompson CH, Irish AB, Kemp GJ, Taylor DJ, Radda GK (1997) The effect of propionyl l-carnitine on skeletal muscle metabolism in renal failure. Clin Nephrol 47:372–378

    CAS  Google Scholar 

  200. Stadler DD, Chenard CA, Rebouche CJ (1993) Effect of dietary macronutrient content on carnitine excretion and efficiency of carnitine reabsorption. Am J Clin Nutr 58:868–872

    CAS  Google Scholar 

  201. Graziano F, Bisonni R, Catalano V, Silva R, Rovidati S, Mencarini E, Ferraro B, Canestrari F, Baldelli AM, De Gaetano A, Giordani P, Testa E, Lai V (2002) Potential role of levocarnitine supplementation for the treatment of chemotherapy-induced fatigue in non-anaemic cancer patients. Br J Cancer 86:1854–1857

    Article  CAS  Google Scholar 

  202. Cruciani RA, Dvorkin E, Homel P, Culliney B, Malamud S, Shaiova L, Fleishman S, Lapin J, Klein E, Lesage P, Portenoy R, Esteban-Cruciani N (2004) l-Carnitine supplementation for the treatment of fatigue and depressed mood in cancer patients with carnitine deficiency: a preliminary analysis. Ann N Y Acad Sci 1033:168–176

    Article  CAS  Google Scholar 

  203. Cruciani RA, Dvorkin E, Homel P, Culliney B, Malamud S, Lapin J, Portenoy RK, Esteban-Cruciani N (2009) l-Carnitine supplementation in patients with advanced cancer and carnitine deficiency: a double-blind, placebo-controlled study. J Pain Symptom Manage 37:622–631

    Article  CAS  Google Scholar 

Download references

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Eder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringseis, R., Keller, J. & Eder, K. Mechanisms underlying the anti-wasting effect of l-carnitine supplementation under pathologic conditions: evidence from experimental and clinical studies. Eur J Nutr 52, 1421–1442 (2013). https://doi.org/10.1007/s00394-013-0511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0511-0

Keywords

Navigation