Skip to main content

Advertisement

Log in

Maternal high-fat diet is associated with altered pancreatic remodelling in mice offspring

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether a maternal high-fat diet (HF) during pregnancy and/or suckling periods predisposes adult C57BL/6 mice offspring to morphological pancreatic modifications.

Methods

Male pups were divided into 5 groups: SC (standard chow)—from dams fed SC during gestation and lactation, maintaining an SC diet from postweaning to adulthood; G—from dams fed HF diets during gestation; L—from dams fed HF diets during lactation; GL—from dams fed HF diets during gestation and lactation; and GL/HF—from dams fed HF diets during gestation and lactation, maintaining an HF diet from postweaning to adulthood. We analysed body mass (BM), plasma insulin, pancreas and adipose tissue structures.

Results

During the entire experiment, the SC group had the lowest BM. However, GL/HF offspring were heavier than the other groups. This weight gain was also accompanied by adipocyte hypertrophy. At 3 months, G offspring showed an increased insulin levels and impairment in carbohydrates metabolism. Furthermore, pancreatic islets were hypertrophied in G, GL and GL/HF offspring in comparison with SC offspring.

Conclusion

HF diet administration during the gestation period is more harmful than during the lactation period, exerting deleterious effects on pancreatic morphology in addition to larger fat deposits in adult mice offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Katulanda P, Jayawardena MA, Sheriff MH, Constantine GR, Matthews DR (2010) Prevalence of overweight and obesity in Sri Lankan adults. Obes Rev 11:751–756

    Article  CAS  Google Scholar 

  2. Duvnjak L, Duvnjak M (2009) The metabolic syndrome—an ongoing story. J Physiol Pharmacol 60(Suppl 7):19–24

    Google Scholar 

  3. Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O, Saris WH, Paniagua JA, Golabek-Leszczynska I, Defoort C, Williams CM, Karsltrom B, Vessby B, Dembinska-Kiec A, Lopez-Miranda J, Blaak EE, Drevon CA, Gibney MJ, Lovegrove JA, Roche HM (2011) Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome—LIPGENE: a European randomized dietary intervention study. Int J Obes (Lond) 35:800–809

    Article  CAS  Google Scholar 

  4. Cerf ME (2010) High fat programming of beta-cell failure. Adv Exp Med Biol 654:77–89

    Article  CAS  Google Scholar 

  5. Drake AJ, Reynolds RM (2010) Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction 140:387–398

    Article  CAS  Google Scholar 

  6. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA (2010) A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 46:212–223

    Article  CAS  Google Scholar 

  7. Charlton M (2009) Fetal obesity syndrome: maternal nutrition as a cause of nonalcoholic steatohepatitis. Hepatology 50:1696–1698

    Article  CAS  Google Scholar 

  8. White CL, Purpera MN, Morrison CD (2009) Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol 296:R1464–1472

    Article  CAS  Google Scholar 

  9. Souza-Mello V, Gregorio BM, Cardoso-de-Lemos FS, de Carvalho L, Aguila MB, Mandarim-de-Lacerda CA (2010) Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet. Clin Sci (Lond) 119:239–250

    Article  CAS  Google Scholar 

  10. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  Google Scholar 

  11. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    Article  CAS  Google Scholar 

  12. Lee Y, Wang MY, Kakuma T, Wang ZW, Babcock E, McCorkle K, Higa M, Zhou YT, Unger RH (2001) Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem 276:5629–5635

    Article  CAS  Google Scholar 

  13. Lee Y, Lingvay I, Szczepaniak LS, Ravazzola M, Orci L, Unger RH (2010) Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. Int J Obes (Lond) 34:396–400

    Article  CAS  Google Scholar 

  14. Gregorio BM, Souza-Mello V, Carvalho JJ, Mandarim-de-Lacerda CA, Aguila MB (2010) Maternal high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. Am J Obstet Gynecol 203(495):e491–498

    Google Scholar 

  15. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  16. Langley-Evans SC, Gardner DS, Jackson AA (1996) Maternal protein restriction influences the programming of the rat hypothalamic-pituitary-adrenal axis. J Nutr 126:1578–1585

    CAS  Google Scholar 

  17. Wainwright PE (1998) Issues of design and analysis relating to the use of multiparous species in developmental nutritional studies. J Nutr 128:661–663

    CAS  Google Scholar 

  18. Mandarim-de-Lacerda CA, Fernandes-Santos C, Aguila MB (2010) Image analysis and quantitative morphology. Methods Mol Biol 611:211–225

    Article  Google Scholar 

  19. Mandarim-de-Lacerda CA (2003) Stereological tools in biomedical research. An Acad Brasil Cienc 75:469–486

    Google Scholar 

  20. Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS (2006) Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab 291:E792–799

    Article  CAS  Google Scholar 

  21. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS, Torsoni MA (2012) Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem 23:341–348

    Article  CAS  Google Scholar 

  22. Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150:4999–5009

    Article  CAS  Google Scholar 

  23. Guo F, Jen KL (1995) High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57:681–686

    Article  CAS  Google Scholar 

  24. Parente LB, Aguila MB, Mandarim-de-Lacerda CA (2008) Deleterious effects of high-fat diet on perinatal and postweaning periods in adult rat offspring. Clin Nutr 27:623–634

    Article  CAS  Google Scholar 

  25. Gniuli D, Calcagno A, Caristo ME, Mancuso A, Macchi V, Mingrone G, Vettor R (2008) Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J Lipid Res 49:1936–1945

    Article  CAS  Google Scholar 

  26. Lucas A (1998) Programming by early nutrition: an experimental approach. J Nutr 128:401S–406S

    CAS  Google Scholar 

  27. Rooney K, Ozanne SE (2011) Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int Journal of obesity 35:883–890

    Article  CAS  Google Scholar 

  28. Fraulob JC, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA (2012) Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin Sci (Lond) 123:259–270

    Article  CAS  Google Scholar 

  29. Jarrar MH, Baranova A, Collantes R, Ranard B, Stepanova M, Bennett C, Fang Y, Elariny H, Goodman Z, Chandhoke V, Younossi ZM (2008) Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 27:412–421

    Article  CAS  Google Scholar 

  30. Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C, Reusens B (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52:1133–1142

    Article  CAS  Google Scholar 

  31. Portha B, Chavey A, Movassat J (2011) Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass. Exp Diabetes Res 2011:105076

    Google Scholar 

  32. Ackermann AM, Gannon M (2007) Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol 38:193–206

    Article  CAS  Google Scholar 

  33. Fex M, Nitert MD, Wierup N, Sundler F, Ling C, Mulder H (2007) Enhanced mitochondrial metabolism may account for the adaptation to insulin resistance in islets from C57BL/6 J mice fed a high-fat diet. Diabetologia 50:74–83

    Article  CAS  Google Scholar 

  34. Flier SN, Kulkarni RN, Kahn CR (2001) Evidence for a circulating islet cell growth factor in insulin-resistant states. Proc Natl Acad Sci USA 98:7475–7480

    Article  CAS  Google Scholar 

  35. Kahn SE (2001) Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86:4047–4058

    Article  CAS  Google Scholar 

  36. Sesti G (2006) Pathophysiology of insulin resistance. Best Pract Res Clin Endocrinol Metab 20:665–679

    Article  CAS  Google Scholar 

  37. Theys N, Ahn MT, Bouckenooghe T, Reusens B, Remacle C (2011) Maternal malnutrition programs pancreatic islet mitochondrial dysfunction in the adult offspring. J Nutr Biochem 22:985–994

    Article  CAS  Google Scholar 

  38. Rasmussen KM, Catalano PM, Yaktine AL (2009) New guidelines for weight gain during pregnancy: what obstetrician/gynecologists should know. Curr Opin Obstet Gynecol 21:521–526

    Article  Google Scholar 

  39. Symonds ME, Sebert SP, Budge H (2009) The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health. Proc Nutr Soc 68:416–421

    Article  CAS  Google Scholar 

  40. Cerf ME, Williams K, Chapman CS, Louw J (2007) Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas 34:347–353

    Article  CAS  Google Scholar 

  41. Cerf ME, Williams K, Nkomo XI, Muller CJ, Du Toit DF, Louw J, Wolfe-Coote SA (2005) Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol 288:R1122–1128

    Article  CAS  Google Scholar 

  42. Cerf ME, Chapman CS, Muller CJ, Louw J (2009) Gestational high-fat programming impairs insulin release and reduces Pdx-1 and glucokinase immunoreactivity in neonatal Wistar rats. Metabolism 58:1787–1792

    Article  CAS  Google Scholar 

  43. Cerf ME (2011) Parental high-fat programming of offspring development, health and beta-cells. Islets 3:118–120

    Article  Google Scholar 

  44. Catta-Preta M, Martins MA, Brunini TMC, Mendes-Ribeiro AC, Mandarim-de-Lacerda CA, Aguila MB (2012) Modulation of cytokines, resistin, and distribution of adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition 28:212–219

    Article  CAS  Google Scholar 

  45. Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G, Kerr-Conte J, Pattou F, Berney T, Pipeleers D, Halban PA, Schuit FC, Donath MY (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105:13163–13168

    Article  CAS  Google Scholar 

  46. Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56:311–317

    Article  Google Scholar 

  47. Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15:183–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Brazilian agencies CNPq (Conselho Nacional de Ciencia e Tecnologia) and FAPERJ (Fundaçao para o Amparo a Pesquisa do Estado do Rio de Janeiro). The authors would like to thank Thatiany Marinho and Angelica Figueiredo for their technical assistance.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Barbosa Aguila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorio, B.M., Souza-Mello, V., Mandarim-de-Lacerda, C.A. et al. Maternal high-fat diet is associated with altered pancreatic remodelling in mice offspring. Eur J Nutr 52, 759–769 (2013). https://doi.org/10.1007/s00394-012-0382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0382-9

Keywords