Skip to main content
Log in

Stimulation of the vagus nerve as a therapeutic principle

Stimulation des Nervus vagus als therapeutisches Prinzip

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

Modulation of the parasympathetic tone leads to extensive physiological reactions at several levels, including the decreased production of proinflammatory cytokines. Many studies have demonstrated that chronic inflammatory diseases are associated with reduced parasympathetic and increased sympathetic activities. Moreover, it was demonstrated that a low parasympathetic and a high sympathetic activity in patients with rheumatoid arthritis (RA) predicts a poor therapeutic response to anti-tumor necrosis factor (TNF) treatment compared to RA patients with a more balanced autonomic nervous system. The autonomic equilibrium could be restored by electrical stimulation of the vagus nerve. Considering the patients who do not sufficiently respond to the available drugs, patients for whom the effectiveness of the drugs wanes over time, or have drug-related adverse events, a nonpharmacological approach such as bioelectronics might be a useful supplement as an instrument in the successful extension of the therapeutic armamentarium for rheumatic diseases; however, there is a great need for further studies and the development of novel therapeutic strategies in the field of neuroimmunology.

Zusammenfassung

Eine Modulation des parasympathischen Tonus führt zu ausgedehnten physiologischen Reaktionen auf mehreren Ebenen einschließlich der verringerten Produktion proinflammatorischer Zytokine. Zahlreiche Studien zeigten, dass chronisch entzündliche Erkrankungen mit einer verminderten parasympathischen und einer erhöhten sympathischen Aktivität einhergehen. Darüber hinaus wurde gezeigt, dass eine niedrige parasympathische und hohe sympathische Aktivität bei Patienten mit rheumatoider Arthritis (RA) im Vergleich zu RA-Patienten mit einem gut balancierten autonomen Nervensystem ein schlechtes therapeutisches Ansprechen auf eine Anti-TNF(Tumor-Nekrose-Faktor)-Therapie vorhersagt. Das autonome Gleichgewicht könnte durch elektrische Stimulation des N. vagus wiederhergestellt werden. In Anbetracht der Patienten, die entweder auf die verfügbaren Medikamente nicht ausreichend ansprechen, bei denen im Laufe der Zeit die Wirksamkeit der Medikamente verloren geht oder die arzneimittelbedingte unerwünschte Ereignisse haben, könnte ein nichtpharmakologischer Ansatz wie Bioelektronik eine nützliche Ergänzung als Instrument zur erfolgreichen Erweiterung des therapeutischen Arsenals rheumatischer Erkrankungen sein. Es besteht jedoch ein großer Bedarf an Studien und der Entwicklung neuer therapeutischer Strategien im Bereich der Neuroimmunologie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adlan AM, Lip GY, Paton JF, Kitas GD, Fisher JP (2014) Autonomic function and rheumatoid arthritis: a systematic review. Semin Arthrit Rheum 44:283–304

    Article  Google Scholar 

  2. Aranow C, Atish-Fregoso Y, Lesser M, Mackay M, Anderson E, Chavan S, Zanos TP, Datta-Chaudhuri T, Bouton C, Tracey KJ, Diamond B (2021) Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Ann Rheum Dis 80(2):203–208

    Article  CAS  PubMed  Google Scholar 

  3. Bonaz B, Sinniger V, Pellissier S (2016) Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594(20):5781–5790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonaz B, Sinniger V, Pellissier S (2019) Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harb Perspect Med 9(8):a34199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Butt MF, Albusoda A, Farmer AD, Aziz Q (2020) The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 236(4):588–611

    Article  PubMed  Google Scholar 

  6. Capilupi MJ, Kerath SM, Becker LB (2020) Vagus nerve stimulation and the cardiovascular system. Cold Spring Harb Perspect Med 10(2):a34173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakravarthy K, Chaudhry H, Williams K, Christo PJ (2015) Review of the uses of vagal nerve stimulation in chronic pain management. Curr Pain Headache Rep 19(12):54

    Article  PubMed  Google Scholar 

  8. Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA et al (2022) Vagus nerve stimulation: a personalized therapeutic approach for Crohn’s and other inflammatory bowel diseases. Cells 11(24):4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Courties A, Deprouw C, Maheu E, Gibert E, Gottenberg J‑E, Champey J (2022) Efect of transcutaneous vagus nerve stimulation in erosive hand osteoarthritis: results from a pilot trial. J Clin Med 11(4):1087

    Article  PubMed  PubMed Central  Google Scholar 

  10. Courties A, Berenbaum F, Sellam J (2021) Vagus nerve stimulation in musculoskeletal diseases. Joint Bone Spine 88(3):105149

    Article  PubMed  Google Scholar 

  11. Cruz CJ, Dewberry LS, Otto KJ, Allen KD (2023) Neuromodulation as a potential disease-modifying therapy for osteoarthritis. Curr Rheumatol Rep 25(1):1–11

    Article  PubMed  Google Scholar 

  12. Davies K, Ng WF (2021) Autonomic nervous system dysfunction in primary Sjögren’s syndrome. Front Immunol 12:702505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drewes A, Brock C, Rasmussen S, Møller H, Brock B, Deleuran B et al (2021) Short-term transcutaneous non-invasive vagus nerve stimulation may reduce disease activity and pro-inflammatory cytokines in rheumatoid arthritis: results of a pilot study. Scand J Rheumatol 50:20–27

    Article  CAS  PubMed  Google Scholar 

  14. Genovese MC, Gaylis NB, Sikes D, Kivitz A, Horowitz DL, Peterfy C et al (2020) Safety and efficacy of neurostimulation with a miniaturised vagus nerve stimulation device in patients with multidrug-refractory rheumatoid arthritis: A two-stage multicentre, randomised pilot study. Lancet Rheumatol 2:e527–e538

    Article  PubMed  Google Scholar 

  15. Goggins E, Mitani S, Tanaka S (2022) Clinical perspectives on vagus nerve stimulation: present and future. Clin Sci 136(9):695–709

    Article  Google Scholar 

  16. Hilz MJ (2022) Transcutaneous vagus nerve stimulation—A brief introduction and overview. Auton Neurosci 243:103038

    Article  PubMed  Google Scholar 

  17. Hoover DB (2017) Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther 179:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ingegnoli F, Buoli M, Antonucci F, Coletto LA, Esposito CM, Caporali R (2020) The link between autonomic nervous system and rheumatoid arthritis: from bench to bedside. Front Med 7:589079

    Article  Google Scholar 

  19. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR et al (2016) Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA 113:8284–8289

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koopman FA, Tang MW, Vermeij J, de Hair MJ, Choi IY, Vervoordeldonk MJ et al (2016) Autonomic dysfunction precedes development of rheumatoid arthritis: a prospective cohort study. EBioMedicine 6:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koopman FA, Schuurman PR, Vervoordeldonk MJ, Tak PP (2014) Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis? Best Pract Res Clin Rheumatol 28(4):625–635

    Article  CAS  PubMed  Google Scholar 

  22. Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP (2017) Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 282(1):64–75

    Article  CAS  PubMed  Google Scholar 

  23. Lange G, Janal MN, Maniker A, Fitzgibbons J, Fobler M, Cook D (2011) Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med 12(9):1406–1413

    Article  PubMed  Google Scholar 

  24. Lomarev M, Denslow S, Nahas Z, Chae JH, George MS, Bohning DE (2002) Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. J Psychiatr Res 36(4):219–227

    Article  PubMed  Google Scholar 

  25. Martins DF, Viseux FJF, Salm DC, Ribeiro ACA, da Silva HKL, Seim LA, Bittencourt EB, Bianco G, Moré AOO, Reed WR, Mazzardo-Martins L (2021) The role of the vagus nerve in fibromyalgia syndrome. Neurosci Biobehav Rev 131:1136–1149

    Article  PubMed  Google Scholar 

  26. Marrosu F, Maleci A, Cocco E, Puligheddu M, Barberini L, Marrosu MG (2007) Vagal nerve stimulation improves cerebellar tremor and dysphagia in multiple sclerosis. Mult Scler 13(9):1200–1202

    Article  CAS  PubMed  Google Scholar 

  27. Rasmussen SE, Pfeiffer-Jensen M, Drewes AM, Farmer AD, Deleuran BW, Stengaard-Pedersen K, Brock B, Brock CC (2018) Vagal influences in rheumatoid arthritis. Scand J Rheumatol 47(1):1–11

    Article  CAS  PubMed  Google Scholar 

  28. Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF (2004) Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J 25:363–370

    Article  PubMed  Google Scholar 

  29. Tarn J, Legg S, Mitchell S, Simon B, Ng W‑F (2019) The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary Sjögren’s syndrome. Neuromodulation 22(5):580–585

    Article  PubMed  Google Scholar 

  30. Van Laere K, Vonck K, Boon P, Brans B, Vandekerckhove T, Dierckx R (2000) Vagus nerve stimulation in refractory epilepsy: SPECT activation study. J Nucl Med 41(7):1145–1154

    PubMed  Google Scholar 

  31. Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A (2021) Vagus nerve stimulation in brain diseases: therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 127:37–53

    Article  CAS  PubMed  Google Scholar 

  32. Yeater TD, Cruz CJ, Cruz-Almeida Y, Allen KD (2022) Autonomic nervous system dysregulation and osteoarthritis pain: mechanisms, measurement, and future outlook. Curr Rheumatol Rep 24(6):175–183

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Headache 56(1):71–78

    Article  PubMed  Google Scholar 

  34. Yuan H, Silberstein SD (2016) Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache 56(2):259–266

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Seifert.

Ethics declarations

Conflict of interest

O. Seifert and C. Baerwald declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

Additional information

Editor

Christoph Baerwald, Leipzig

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, O., Baerwald, C. Stimulation of the vagus nerve as a therapeutic principle. Z Rheumatol 83 (Suppl 1), 1–7 (2024). https://doi.org/10.1007/s00393-023-01398-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-023-01398-3

Keywords

Schlüsselwörter

Navigation