Skip to main content

Advertisement

Log in

NF-κB/PPARγ and/or AP-1/PPARγ ‘on/off’ switches and induction of CBP in colon adenocarcinomas: correlation with COX-2 expression

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

Several studies indicate that peroxisome proliferator-activated receptor gamma (PPARγ) represses activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcriptional activity and this negative cross-talk occupies an important role in carcinogenesis. The present study evaluated the differential expression profile of AP-1 constituents (c-FOS and phosphorylated-active pc-JUN), p-IκB-α (phosphorylated IκB-α, a signaling intermediate of NF-κB pathway), PPARγ, cyclic AMP-response element binding-binding protein (CBP, a known AP-1, NF-κB, and PPARγ transcriptional coactivator), epidermal growth factor receptor (EGF-R), p53, and COX-2 in normal colonic epithelial cells and colon adenocarcinoma cells.

Materials and methods

Immunohistochemical methodology was performed on formalin-fixed, paraffin-embedded sections from 60 patients with colon adenocarcinomas. A molecular profile was created for each patient and the induction or down-regulation of each pathway from normal to cancer cells was documented. Relationships between transcription factors and downstream molecular targets were evaluated by Spearman’s rho correlation coefficient and validated by nonparametric Kruskal–Wallis test.

Results/findings

P-IκB-α (P<0.001), CBP (P<0.001), c-FOS (P=0.047), pc-JUN (P=0.047), and EGF-R (P<0.001) were up-regulated in colon adenocarcinomas while PPARγ (P<0.001) was concomitantly down-regulated. p-IκB-α, CBP, pc-JUN, EGF-R, and p53 expression all correlated positively with COX-2 while PPARγ expression correlated inversely with COX-2.

Interpretation/conclusion

NF-κB/PPARγ and/or AP-1/PPARγ expressional ‘on/off’ switches are common molecular events during colorectal carcinogenesis. Down-regulation of PPARγ and induction of the CBP transcriptional coactivator can augment NF-κB and AP-1 transcriptional activities leading to up-regulation of COX-2 expression in colon adenocarcinoma cells. p-IκB-α, pc-JUN, and CBP could potentially provide the basis for future molecular-targeted anticancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  PubMed  CAS  Google Scholar 

  2. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 2:240–246

    Article  Google Scholar 

  3. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  4. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    PubMed  CAS  Google Scholar 

  5. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  6. Papavassiliou AG, Treier M, Bohmann D (1995) Intramolecular signal transduction in c-Jun. EMBO J 14:2014–2019

    PubMed  CAS  Google Scholar 

  7. Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M, Feramisco J, Montminy M (1994) Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226–229

    Article  PubMed  CAS  Google Scholar 

  8. Karamouzis MV, Papadas T, Varakis I, Sotiropoulou-Bonikou G, Papavassiliou AG (2002) Induction of the CBP transcriptional co-activator early during laryngeal carcinogenesis. J Cancer Res Clin Oncol 128:135–140

    Article  PubMed  CAS  Google Scholar 

  9. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:131–136

    Article  CAS  Google Scholar 

  10. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

  11. van Dam H, Castellazzi M (2001) Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis. Oncogene 20:2453–2464

    Article  PubMed  CAS  Google Scholar 

  12. Hirano F, Tanada H, Makino Y, Okamoto K, Hiramoto M, Handa H, Makino I (1996) Induction of the transcription factor AP-1 in cultured human colon adenocarcinoma cells following exposure to bile acids. Carcinogenesis 17:427–433

    PubMed  CAS  Google Scholar 

  13. Glinghammar B, Holmberg K, Rafter J (1999) Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis 20:969–976

    Article  PubMed  CAS  Google Scholar 

  14. Chen A, Davis BH, Bissonnette M, Scaglione-Sewell B, Brasitus TA (1999) 1,25-Dihydroxyvitamin D(3) stimulates activator protein-1-dependent Caco-2 cell differentiation. J Biol Chem 274:35505–35513

    Article  PubMed  CAS  Google Scholar 

  15. Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102

    Article  PubMed  CAS  Google Scholar 

  16. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    PubMed  CAS  Google Scholar 

  17. Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, Takahashi E, Tanabe T (1994) Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem 221:889–897

    Article  PubMed  CAS  Google Scholar 

  18. Guo YS, Hellmich MR, Wen XD, Townsend CM (2001) Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 276:22941–22947

    Article  PubMed  CAS  Google Scholar 

  19. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ (2002) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649–18657

    Article  PubMed  CAS  Google Scholar 

  20. Subbaramaiah K, Cole PA, Dannenberg AJ (2002) Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res 62:2522–2530

    PubMed  CAS  Google Scholar 

  21. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  PubMed  CAS  Google Scholar 

  22. Kojima M, Morisaki T, Izuhara K, Uchiyama A, Matsunari Y, Katano M, Tanaka M (2000) Lipopolysaccharide increases cyclo-oxygenase-2 expression in a colon carcinoma cell line through nuclear factor-kappa B activation. Oncogene 19:1225–1231

    Article  PubMed  CAS  Google Scholar 

  23. Liu W, Reinmuth N, Stoeltzing O, Parikh AA, Tellez C, Williams S, Jung YD, Fan F, Takeda A, Akagi M, Bar-Eli M, Gallick GE, Ellis LM (2003) Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res 63:3632–3636

    PubMed  CAS  Google Scholar 

  24. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947

    Article  PubMed  CAS  Google Scholar 

  25. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman B (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052

    Article  PubMed  CAS  Google Scholar 

  26. Subbaramaiah K, Lin DT, Hart JC, Dannenberg AJ (2001) Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem 276:12440–12448

    Article  PubMed  CAS  Google Scholar 

  27. Yang WL, Frucht H (2001) Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis 22:1379–1383

    Article  PubMed  CAS  Google Scholar 

  28. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104:383–389

    PubMed  CAS  Google Scholar 

  29. Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273

    Article  PubMed  CAS  Google Scholar 

  30. Law RE, Meehan WP, Xi XP, Graf K, Wuthrich DA, Coats W, Faxon D, Hsueh WA (1996) Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 98:1897–1905

    Article  PubMed  CAS  Google Scholar 

  31. Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G, Kim TS (2000) Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 275:32681–32687

    Article  PubMed  CAS  Google Scholar 

  32. Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ (1999) Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274:10911–10915

    Article  PubMed  CAS  Google Scholar 

  33. Leung WK, To KF, Ng YP, Lee TL, Lau JY, Chan FK, Ng EK, Chung SC, Sung JJ (2001) Association between cyclo-oxygenase-2 overexpression and missense p53 mutations in gastric cancer. Br J Cancer 84:335–339

    Article  PubMed  CAS  Google Scholar 

  34. Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, Joensuu H, Isola J (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635

    PubMed  CAS  Google Scholar 

  35. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305

    Article  PubMed  CAS  Google Scholar 

  36. Din FV, Dunlop MG, Stark LA (2004) Evidence for colorectal cancer cell specificity of aspirin effects on NF kappa B signalling and apoptosis. Br J Cancer 91(2):381–388

    PubMed  CAS  Google Scholar 

  37. Lu T, Burdelya LG, Swiatkowski SM, Boiko AD, Howe PH, Stark GR, Gudkov AV (2004) Secreted transforming growth factor beta2 activates NF-kappaB, blocks apoptosis, and is essential for the survival of some tumor cells. Proc Natl Acad Sci U S A 101:7112–7117

    Article  PubMed  CAS  Google Scholar 

  38. Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80

    Article  PubMed  CAS  Google Scholar 

  39. Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C, Nambiar P, Rosenberg DW, Bronson RT, Edelmann W, Kucherlapati R, Gonzalez FJ, Spiegelman BM (2002) APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci U S A 99:13771–13776

    Article  PubMed  CAS  Google Scholar 

  40. Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB, Aaltonen LA, de la Chapelle A, Spiegelman BM, Eng C (1999) Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 3:799–804

    Article  PubMed  CAS  Google Scholar 

  41. Smith WM, Zhou XP, Kurose K, Gao X, Latif F, Kroll T, Sugano K, Cannistra SA, Clinton SK, Maher ER, Prior TW, Eng C (2001) Opposite association of two PPARG variants with cancer: overrepresentation of H449H in endometrial carcinoma cases and underrepresentation of P12A in renal cell carcinoma cases. Hum Genet 109:146–151

    Article  PubMed  CAS  Google Scholar 

  42. Zhou XP, Smith WM, Gimm O, Mueller E, Gao X, Sarraf P, Prior TW, Plass C, von Deimling A, Black PM, Yates AJ, Eng C (2000) Over-representation of PPARgamma sequence variants in sporadic cases of glioblastoma multiforme: preliminary evidence for common low penetrance modifiers for brain tumour risk in the general population. J Med Genet 37:410–414

    Article  PubMed  CAS  Google Scholar 

  43. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637–2645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nikolopoulou, N. Mpeka, and F. Chrysanthopoulos, technicians at the Pathology Department of Aeghion General Hospital, for their help and enthusiastic work. P. A. Konstantinopoulos and G. P. Vandoros contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinopoulos, P.A., Vandoros, G.P., Sotiropoulou-Bonikou, G. et al. NF-κB/PPARγ and/or AP-1/PPARγ ‘on/off’ switches and induction of CBP in colon adenocarcinomas: correlation with COX-2 expression. Int J Colorectal Dis 22, 57–68 (2007). https://doi.org/10.1007/s00384-006-0112-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-006-0112-y

Keywords

Navigation