Skip to main content

Advertisement

Log in

Resistance mechanisms of gastrointestinal cancers: why does conventional chemotherapy fail?

  • Review
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background

Gastrointestinal cancers belong to the most important causes of cancer death in the Western world. Because cure can be achieved only by complete surgical removal of the tumor, and most patients have metastasis at the time point of diagnosis, the majority of patients receive chemotherapy.

Discussion

Indications for chemotherapy are either the prevention of recurrence after tumor resection (neoadjuvant or adjuvant) or palliative treatment if the tumor is already widespread at diagnosis. Although gastrointestinal cancers often respond to primary treatment, the long-term results are disappointing. This is attributable to a variety of cellular resistance mechanisms, namely: (a) kinetic resistance due to slow growth rates that preclude the use of topoisomerase IIα inhibitors and related drugs; (b) genetic resistance due to mutations, for example, in the p53 gene, which impede the sensing of DNA damage and obstruct apoptotic pathways; (d) pharmacokinetic resistance, due to an excess of target proteins, inadequate drug metabolism, administration period, time or drug interactions; and (d) biological resistance due to tumor-induced environmental changes. These factors interfere specifically with the molecular mode of action of standard drugs used in the therapy of gastrointestinal cancers.

Conclusion

Awareness of the various causes of drug resistance may help to devise individual tumor-adapted treatment designs. Notably, nonsteroidal antiphogistics may delay carcinogenesis, anticoagulants may increase the vulnerability of circulating tumor cells and reduce the nesting abilities of single tumor cells, inhibitors of angiogenesis may quell the growth of micrometastases, and kinase inhibitors may be administered as sensitizers to cytotoxic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker N, Deeg E (2001) Atlas of cancer mortality. www.dkfz-heidelberg.de

  2. Gompertz B (1825) On the nature of the function expressive of the law of human mortality and the new mode of determining the value of life contingencies. Philos Trans R Soc Lond B Biol Sci 115:513–585

    Google Scholar 

  3. Rudolph P, Knuchel R, Endl E, Heidebrecht HJ, Hofstader F, Parwaresch R (1998) The immunohistochemical marker Ki-S2: cell cycle kinetics and tissue distribution of a novel proliferation-specific antigen. Mod Pathol 11:450–456

    CAS  PubMed  Google Scholar 

  4. Kellner U, Sehested M, Jensen PB, Gieseler F, Rudolph P (2002) Culprit and victim-DNA topoisomerase II. Lancet Oncol 3:235–243

    Article  CAS  PubMed  Google Scholar 

  5. Vogelstein B, Fearon ER, Hamilton SR, Preisinger AC, Willard HF, Michelson AM, Riggs AD, Orkin SH (1987) Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res 47:4806–4813

    CAS  PubMed  Google Scholar 

  6. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    PubMed  Google Scholar 

  7. Leslie A, Carey FA, Pratt NR, Steele RJ (2002) The colorectal adenoma-carcinoma sequence. Br J Surg 89:845–860

    Article  CAS  PubMed  Google Scholar 

  8. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    CAS  PubMed  Google Scholar 

  9. Cho KR, Fearon ER (1995) DCC: linking tumour suppressor genes and altered cell surface interactions in cancer? Eur J Cancer 31A:1055–1060

    Google Scholar 

  10. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:175–185

    CAS  PubMed  Google Scholar 

  11. Sigal A, Rotter V (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60:6788–6793

    CAS  PubMed  Google Scholar 

  12. Ahnen DJ (1996) Stalking the guardian of the genome: p53 in colorectal carcinogenesis. Am J Gastroenterol 91:3–6

    CAS  PubMed  Google Scholar 

  13. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733

    Article  CAS  PubMed  Google Scholar 

  14. Gieseler F, Bauer E, Nuessler V, Clark M, Valsamas S (1999) Molecular effects of topoisomerase II inhibitors in AML cell lines: correlation of apoptosis with topoisomerase II activity but not with DNA damage. Leukemia 13:1859–1863

    Article  CAS  PubMed  Google Scholar 

  15. Gieseler F, Nuessler V (1999) Apoptosis research is saving the reputation of chemotherapy. Leukemia 13:1853

    Article  PubMed  Google Scholar 

  16. Gieseler F, Nuessler V (1998) Cellular resistance mechanisms with impact on the therapy of multiple myeloma. Leukemia 12:1009–1012

    Article  CAS  PubMed  Google Scholar 

  17. Kellner U, Rudolph P, Parwaresch R (2000) Human DNA-topoisomerases—diagnostic and therapeutic implications for cancer. Onkologie 23:424–430

    Article  PubMed  Google Scholar 

  18. Diez M, Medrano MJ, Gutierrez A, Lopez A, Muguerza JM, Hernandez P, Lozano O, Noguerales F, Ruiz A, Granell J (2000) P53 protein expression in gastric adenocarcinoma. Negative predictor of survival after postoperative adjuvant chemotherapy. Anticancer Res 20:3929–3933

    CAS  PubMed  Google Scholar 

  19. Etienne MC, Chazal M, Laurent-Puig P, Magné N, Rosty C, Formento J, Francoual M, Formento P, Renée N, Chamorey E, et al (2002) Prognostic value of tumoral thymidylate synthase and p53 in metastatic colorectal cancer patients receiving fluorouracil-based chemotherapy: phenotypic and genotypic analyses. J Clin Oncol 20:2832–2843

    Article  CAS  PubMed  Google Scholar 

  20. Lee Y, Chen Y, Chang LS, Johnson LF (1997) Inhibition of mouse thymidylate synthase promoter activity by the wild-type p53 tumor suppressor protein. Exp Cell Res 234:270–276

    Article  CAS  PubMed  Google Scholar 

  21. Chu E, Copur SM, Ju J, Chen TM, Khleif S, Voeller DM, Mizunuma N, Patel M, Maley GF, Maley F, et al (1999) Thymidylate synthase protein and p53 mRNA form an in vivo ribonucleoprotein complex. Mol Cell Biol 19:1582–1594

    CAS  PubMed  Google Scholar 

  22. Gobert C, Skladanowski A, Larsen AK (1999) The interaction between p53 and DNA topoisomerase I is regulated differently in cells with wild-type and mutant p53. Proc Natl Acad Sci U S A 96:10355–10360

    Article  CAS  PubMed  Google Scholar 

  23. Soe K, Hartmann H, Schlott B, Stevnsner T, Grosse F (2002) The tumor suppressor protein p53 stimulates the formation of the human topoisomerase I double cleavage complex in vitro. Oncogene 21:6614–6623

    Article  CAS  PubMed  Google Scholar 

  24. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, Hendrickson EA, Balan KV, Pantazis P, Wyche JH (2002) Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277:17154–17160

    Article  CAS  PubMed  Google Scholar 

  25. Collins FS, Trent JM (2001) Cancer genetics. In: Harrison's principles of internal medicine, 15th edn. McGraw Hill, New York

  26. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR (2002) Mutations in APC, Kirsten-ras, and p53–alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A 99:9433–9438

    Article  CAS  PubMed  Google Scholar 

  27. Kaina B, Christmann M (2002) DNA repair in alkylating drug resistance. Int J Clin Pharmacol Ther 40:354–367

    CAS  PubMed  Google Scholar 

  28. Bevilacqua RA, Simpson AJ (2000) Methylation of the hMLH1 promoter but no hMLH1 mutations in sporadic gastric carcinomas with high-level microsatellite instability. Int J Cancer 87:200–203

    Google Scholar 

  29. Farrington SM, Lin-Goerke J, Ling J, Wang Y, Burczak JD, Robbins DJ, Dunlop MG (1998) Systematic analysis of hMSH2 and hMLH1 in young colon cancer patients and controls. Am J Hum Genet 63:749–759

    CAS  PubMed  Google Scholar 

  30. Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC, McDonnell SK, Schaid DJ, Vockley CW, Michels VV, et al (1998) Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 58:1713–1718

    CAS  PubMed  Google Scholar 

  31. Lipkin SM, Wang V, Stoler DL, Anderson GR, Kirsch I, Hadley D, Lynch HT, Collins FS (2001) Germline and somatic mutation analyses in the DNA mismatch repair gene MLH3: evidence for somatic mutation in colorectal cancers. Hum Mutat 17:389–396

    Article  CAS  PubMed  Google Scholar 

  32. Vikhanskaya F, Colella G, Valenti M, Parodi S, D'Incalci M, Broggini M (1999) Cooperation between p53 and hMLH1 in a human colocarcinoma cell line in response to DNA damage. Clin Cancer Res 5:937–941

    CAS  PubMed  Google Scholar 

  33. Zhang H, Richards B, Wilson T, Lloyd M, Cranston A, Thorburn A, Fishel R, Meuth M (1999) Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res 59:3021–3027

    CAS  PubMed  Google Scholar 

  34. Aebi S, Fink D, Gordon R, Kim HK, Zheng H, Fink JL, Howell SB (1997) Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin Cancer Res 3:1763–1767

    PubMed  Google Scholar 

  35. Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, Boland CR (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117:123–131

    CAS  PubMed  Google Scholar 

  36. Lin X, Ramamurthi K, Mishima M, Kondo A, Christen RD, Howell SB (2001) P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res 61:1508–1516

    CAS  PubMed  Google Scholar 

  37. Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61:1307–1317

    CAS  PubMed  Google Scholar 

  38. Norton L, Simon R (1986) The Norton-Simon hypothesis revisited. Cancer Treat Rep 70:163–169

    CAS  PubMed  Google Scholar 

  39. Goldie JH, Coldman AJ, Ng V, Hopkins HA, Looney WB (1988) A mathematical and computer-based model of alternating chemotherapy and radiation therapy in experimental neoplasms. Antibiot Chemother 41:11–20

    CAS  PubMed  Google Scholar 

  40. Goldie JH, Coldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63:1727–1733

    CAS  PubMed  Google Scholar 

  41. Takebayashi Y, Akiyama S, Natsugoe S, Hokita S, Niwa K, Kitazono M, Sumizawa T, Tani A, Furukawa T, Aikou T (1998) The expression of multidrug resistance protein in human gastrointestinal tract carcinomas. Cancer 82:661–666

    Article  CAS  PubMed  Google Scholar 

  42. Hotta T, Tanimura H, Iwahashi M, Tani M, Tsunoda T, Noguchi K, Mizobata S, Arii K, Terasawa H, Nakamori M, et al (1999) P-glycoprotein-expressing tumor cells are resistant to anticancer drugs in human gastrointestinal cancer. Surg Today 29:591–596

    Article  CAS  PubMed  Google Scholar 

  43. Redmond SM, Joncourt F, Buser K, Ziemiecki A, Altermatt HJ, Fey M, Margison G, Cerny T (1991) Assessment of P-glycoprotein, glutathione-based detoxifying enzymes and O6-alkylguanine-DNA alkyltransferase as potential indicators of constitutive drug resistance in human colorectal tumors. Cancer Res 51:2092–2097

    CAS  PubMed  Google Scholar 

  44. Hinoshita E, Uchiumi T, Taguchi K, Kinukawa N, Tsuneyoshi M, Maehara Y, Sugimachi K, Kuwano M (2000) Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clin Cancer Res 6:2401–2407

    CAS  PubMed  Google Scholar 

  45. Schellens JH, Maliepaard M, Scheper RJ, Scheffer GL, Jonker JW, Smit JW, Beijnen JH, Schinkel AH (2000) Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann N Y Acad Sci 922:188–194

    CAS  PubMed  Google Scholar 

  46. Glimelius B, Hoffman K, Graf W, Pahlman L, Sjoden PO (1994) Quality of life during chemotherapy in patients with symptomatic advanced colorectal cancer. The Nordic Gastrointestinal Tumor Adjuvant Therapy Group. Cancer 73:556–562

    CAS  PubMed  Google Scholar 

  47. Wolmark N, Rockette H, Mamounas E, Jones J, Wieand S, Wickerham DL, Bear HD, Atkins JN, Dimitrov NV, Glass AG, et al (1999) Clinical trial to assess the relative efficacy of fluorouracil and leucovorin, fluorouracil and levamisole, and fluorouracil, leucovorin, and levamisole in patients with Dukes' B and C carcinoma of the colon: results from National Surgical Adjuvant Breast and Bowel Project C-04. J Clin Oncol 17:3553–3559

    CAS  PubMed  Google Scholar 

  48. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  CAS  PubMed  Google Scholar 

  49. Vogel I, Kalthoff H (2001) Disseminated tumour cells. Their detection and significance for prognosis of gastrointestinal and pancreatic carcinomas. Virchows Arch 439:109–117

    Article  CAS  PubMed  Google Scholar 

  50. Streit M, Schmidt R, Hilgenfeld RU, Thiel E, Kreuser ED (1996) Adhesion receptors in malignant transformation and dissemination of gastrointestinal tumors. Recent Results Cancer Res 142:19–50

    CAS  PubMed  Google Scholar 

  51. Choi SH, Takahashi K, Eto H, Yoon SS, Tanabe KK (2000) CD44 s expression in human colon carcinomas influences growth of liver metastases. Int J Cancer 85:523–536

    Article  CAS  PubMed  Google Scholar 

  52. Dippold W, Wittig B, Schwaeble W, Mayet W, Meyer zum Buschenfelde KH (1993) Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells. Gut 34:1593–1597

    CAS  PubMed  Google Scholar 

  53. Kozwich DL, Kramer LC, Mielicki WP, Fotopoulos SS, Gordon SG (1994) Application of cancer procoagulant as an early detection tumor marker. Cancer 74:1367–1376

    CAS  PubMed  Google Scholar 

  54. Schiller H, Bartscht T, Arlt A, Zahn M, Seifert A, Bruhn T, Bruhn HD, Gieseler F (2002) Thrombin as a survival factor for cancer cells: inhibition of idarubicin-induced cell death in human leukemia cells in vitro. Int J Clin Pharmacol Ther 40:329–336

    CAS  PubMed  Google Scholar 

  55. D'Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P (2001) Differential expression of protease-activated receptors-1 and −2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 158:2031–2041

    CAS  PubMed  Google Scholar 

  56. Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P, Bar-Shavit R (2001) Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 276:10952–10962

    Article  CAS  PubMed  Google Scholar 

  57. Kim J, Yu W, Kovalski K, Ossowski L (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94:353–362

    CAS  PubMed  Google Scholar 

  58. Bernstein CN, Blanchard JF, Kliewer E, Wajda A (2001) Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91:854–862

    CAS  PubMed  Google Scholar 

  59. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V (1995) Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 22:3–10

    Google Scholar 

  60. Wu XP, Dolnick BJ (1993) 5-Fluorouracil alters dihydrofolate reductase pre-mRNA splicing as determined by quantitative polymerase chain reaction. Mol Pharmacol 44:22–29

    CAS  PubMed  Google Scholar 

  61. Ghoshal K, Jacob ST (1997) An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem Pharmacol 53:1569–1575

    Article  CAS  PubMed  Google Scholar 

  62. Van Cutsem E, Peeters M (1999) Developments in fluoropyrimidine therapy for gastrointestinal cancer. Curr Opin Oncol 11:312–317

    Google Scholar 

  63. Van Cutsem E, Findlay M, Osterwalder B, Kocha W, Dalley D, Pazdur R, Cassidy J, Dirix L, Twelves C, Allman D, et al (2000) Capecitabine, an oral fluoropyrimidine carbamate with substantial activity in advanced colorectal cancer: results of a randomized phase II study. J Clin Oncol 18:1337–1345

    PubMed  Google Scholar 

  64. Reigner B, Blesch K, Weidekamm E (2001) Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet 40:85–104

    Google Scholar 

  65. Collie-Duguid ES, Johnston SJ, Boyce L, Smith N, Cowieson A, Cassidy J, Murray GI, McLeod HL (2001) Thymidine phosphorylase and dihydropyrimidine dehydrogenase protein expression in colorectal cancer. Int J Cancer 94:297–301

    Google Scholar 

  66. Takabayashi A, Iwata S, Kawai Y, Kanai M, Taki Y, Takechi T, Fukushima M (2000) Dihydropyrimidine dehydrogenase activity and mRNA expression in advanced gastric cancer analyzed in relation to effectiveness of preoperative 5-fluorouracil-based chemotherapy. Int J Oncol 17:889–895

    CAS  PubMed  Google Scholar 

  67. Maring JG, van Kuilenburg AB, Haasjes J, Piersma H, Groen HJ, Uges DR, Van Gennip AH, De Vries EG (2002) Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br J Cancer 86:1028–1033

    CAS  PubMed  Google Scholar 

  68. Kornmann M, Link KH, Galuba I, Ott K, Schwabe W, Hausler P, Scholz P, Strater J, Polat S, Leibl B, et al (2002) Association of time to recurrence with thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression in stage II and III colorectal cancer. J Gastrointest Surg 6:331–337

    Article  PubMed  Google Scholar 

  69. Habara K, Ajiki T, Kamigaki T, Nakamura T, Kuroda Y (2001) High expression of thymidylate synthase leads to resistance to 5-fluorouracil in biliary tract carcinoma in vitro. Jpn J Cancer Res 92:1127–1132

    CAS  PubMed  Google Scholar 

  70. Ho DH, Covington W, Brown N, Lin SN, Pazdur R, Huo YY, Creaven PJ, Rustum YM, Meropol NJ, Lassere Y, et al (2000) Oral uracil and Ftorafur plus leucovorin: pharmacokinetics and toxicity in patients with metastatic cancer. Cancer Chemother Pharmacol 46:351–356

    Article  CAS  PubMed  Google Scholar 

  71. Peters GJ, van Groeningen CJ, Giaccone G (2001) Fluorouracil (5FU) pharmacokinetics in 5FU prodrug formulations with a dihydropyrimidine dehydrogenase inhibitor. J Clin Oncol 19:4267–4269

    CAS  PubMed  Google Scholar 

  72. Grothey A, Schmoll HJ (2001) New chemotherapy approaches in colorectal cancer. Curr Opin Oncol 13:275–286

    Article  CAS  PubMed  Google Scholar 

  73. Tanizawa A, Kohn KW, Kohlhagen G, Leteurtre F, Pommier Y (1995) Differential stabilization of eukaryotic DNA topoisomerase I cleavable complexes by camptothecin derivatives. Biochemistry 34:7200–7206

    CAS  PubMed  Google Scholar 

  74. Daza P, Torreblanca J, Garcia-Herdugo G, Moreno FJ (2002) DNA strand-breaks induced by the topoisomerase I inhibitor camptothecin in unstimulated human white blood cells. Cell Biol Int 26:707–713

    Article  CAS  PubMed  Google Scholar 

  75. Wu J, Yin MB, Hapke G, Toth K, Rustum YM (2002) Induction of biphasic DNA double strand breaks and activation of multiple repair protein complexes by DNA topoisomerase I drug 7-ethyl-10-hydroxy-camptothecin. Mol Pharmacol 61:742–748

    Article  CAS  Google Scholar 

  76. Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 13:1841–1851

    Article  CAS  PubMed  Google Scholar 

  77. Jacob S, Aguado M, Fallik D, Praz F (2001) The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res 61:6555–6562

    CAS  PubMed  Google Scholar 

  78. Horie K, Tomida A, Sugimoto Y, Yasugi T, Yoshikawa H, Taketani Y, Tsuruo T (2002) SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 21:7913–7922

    Article  CAS  PubMed  Google Scholar 

  79. Van Cutsem E, Douillard JY, Kohne CH (2001) Toxicity of irinotecan in patients with colorectal cancer. N Engl J Med 345:1351–1352

    Article  Google Scholar 

  80. Saltz LB, Douillard JY, Pirotta N, Alakl M, Gruia G, Awad L, Elfring GL, Locker PK, Miller LL (2001) Irinotecan plus fluorouracil/leucovorin for metastatic colorectal cancer: a new survival standard. Oncologist 6:81–91

    CAS  PubMed  Google Scholar 

  81. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M, et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355:1041–1047

    PubMed  Google Scholar 

  82. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, Maroun JA, Ackland SP, Locker PK, Pirotta N, et al (2000) Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343:905–914

    Google Scholar 

  83. Sargent DJ, Niedzwiecki D, O'Connell MJ, Schilsky RL (2001) Recommendation for caution with irinotecan, fluorouracil, and leucovorin for colorectal cancer. N Engl J Med 345:144–145

    Google Scholar 

  84. Partyka S, Ajani J (1999) Chemotherapy of colorectal cancer. Curr Treat Options Gastroenterol 2:38–48

    PubMed  Google Scholar 

  85. Wilkes GM (2002) New therapeutic options in colon cancer: focus on oxaliplatin. Clin J Oncol Nurs 6:131–137

    Article  PubMed  Google Scholar 

  86. Marchan V, Moreno V, Pedroso E, Grandas A (2001) Towards a better understanding of the cisplatin mode of action. Chemistry 7:808–815

    Article  CAS  PubMed  Google Scholar 

  87. Funato T, Kozawa K, Fujimaki S, Miura T, Kaku M (2001) Increased sensitivity to cisplatin in gastric cancer by antisense inhibition of the her-2/neu (c-erbB-2) gene. Chemotherapy 47:297–303

    Article  CAS  PubMed  Google Scholar 

  88. Consoli U, Milone G, Guido G, Consoli C, Palumbo GA, Giustolisi R (2002) STI571 (GLIVEC) induced hematologic, cytogenetic and molecular remission in a cml patient relapsing with accelerated phase after allogeneic stem cell transplantation. Haematologica 87:ECR37

    PubMed  Google Scholar 

  89. Blanke CD, Eisenberg BL, Heinrich MC (2001) Gastrointestinal stromal tumors. Curr Treat Options Oncol 2:485–491

    CAS  Google Scholar 

  90. Attoub S, Rivat C, Rodrigues S, Van Bocxlaer S, Bedin M, Bruyneel E, Louvet C, Kornprobst M, Andre T, Mareel M, et al (2002) The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res 62:4879–4883

    CAS  PubMed  Google Scholar 

  91. Karnes WE Jr, Weller SG, Adjei PN, Kottke TJ, Glenn KS, Gores GJ, Kaufmann SH (1998) Inhibition of epidermal growth factor receptor kinase induces protease-dependent apoptosis in human colon cancer cells. Gastroenterology 114:930–939

    CAS  PubMed  Google Scholar 

  92. Ciardiello F, Bianco R, Damiano V, Fontanini G, Caputo R, Pomatico G, De Placido S, Bianco AR, Mendelsohn J, Tortora G (2000) Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 6:3739–3747

    CAS  PubMed  Google Scholar 

  93. Bianco C, Tortora G, Bianco R, Caputo R, Veneziani BM, Damiano V, Troiani T, Fontanini G, Raben D, Pepe S, et al (2002) Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res 8:3250–3258

    CAS  PubMed  Google Scholar 

  94. Shaheen RM, Ahmad SA, Liu W, Reinmuth N, Jung YD, Tseng WW, Drazan KE, Bucana CD, Hicklin DJ, Ellis LM (2001) Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 85:584–589

    Article  CAS  PubMed  Google Scholar 

  95. Shaheen RM, Davis DW, Liu W, Zebrowski BK, Wilson MR, Bucana CD, McConkey DJ, McMahon G, Ellis LM (1999) Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res 59:5412–5416

    CAS  PubMed  Google Scholar 

  96. Nam JS, Ino Y, Sakamoto M, Hirohashi S (2002) Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin Cancer Res 8:2430–2436

    CAS  PubMed  Google Scholar 

  97. Senderowicz AM (1999) Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 17:313–320

    Article  CAS  PubMed  Google Scholar 

  98. Motwani M, Jung C, Sirotnak FM, She Y, Shah MA, Gonen M, Schwartz GK (2001) Augmentation of apoptosis and tumor regression by flavopiridol in the presence of CPT-11 in Hct116 colon cancer monolayers and xenografts. Clin Cancer Res 7:4209–4219

    CAS  PubMed  Google Scholar 

  99. Hinz B, Brune K (1999) [Specific COX-2 inhibitors: prospects of therapy with new analgesic and anti-inflammatory substances]. Wien Klin Wochenschr 111:103–112

    CAS  Google Scholar 

  100. Gieseler F (2000) The dilemma of gastroenterological oncology: we know a lot but we still achieve too little. Int J Colorectal Dis 15:112–113

    Google Scholar 

  101. Kim WH, Yeo M, Kim MS, Chun SB, Shin EC, Park JH, Park IS (2000) Role of caspase-3 in apoptosis of colon cancer cells induced by nonsteroidal anti-inflammatory drugs. Int J Colorectal Dis 15:105–111

    Article  CAS  PubMed  Google Scholar 

  102. Smalley W, Ray WA, Daugherty J, Griffin MR (1999) Use of nonsteroidal anti-inflammatory drugs and incidence of colorectal cancer: a population-based study. Arch Intern Med 159:161–166

    CAS  PubMed  Google Scholar 

  103. Reddy BS (1999) Prevention of colon carcinogenesis by components of dietary fiber. Anticancer Res 19:3681–3683

    CAS  PubMed  Google Scholar 

  104. Gwyn K, Sinicrope FA (2002) Chemoprevention of colorectal cancer. Am J Gastroenterol 97:13–21

    Article  CAS  PubMed  Google Scholar 

  105. Jolly K, Cheng KK, Langman MJ (2002) NSAIDs and gastrointestinal cancer prevention. Drugs 62:945–956

    CAS  PubMed  Google Scholar 

  106. Tempelhoff GF von, Harenberg J, Niemann F, Hommel G, Kirkpatrick CJ, Heilmann L (2000) Effect of low molecular weight heparin (Certoparin) versus unfractionated heparin on cancer survival following breast and pelvic cancer surgery: a prospective randomized double-blind trial. Int J Oncol 16:815–824

    Google Scholar 

  107. Gieseler F (2000) Inhibition der Mikrometastasierung durch Dalteparin bei Patienten mit Colonkarzinomen im Stadium Dukes C nach R0-Resektion. Protocol no 39. Arbeitsgemeinschaft Gastroenterologische Onkologie der Deutschen Gesellschaft für Verdauungs- und Stoffwechselkrankheiten (DGVS)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gieseler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gieseler, F., Rudolph, P., Kloeppel, G. et al. Resistance mechanisms of gastrointestinal cancers: why does conventional chemotherapy fail?. Int J Colorectal Dis 18, 470–480 (2003). https://doi.org/10.1007/s00384-003-0496-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-003-0496-x

Keywords

Navigation