Skip to main content

Advertisement

Log in

Altered expression of caveolin-1 in the colon of patients with Hirschsprung’s disease

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background/purpose

The pathogenesis of Hirschsprung’s disease-associated enterocolitis (HAEC) is unclear. Caveolin-1 (Cav-1) regulates the functions of different nitric oxide synthase (NOS) isoforms, which play critical roles in inflammation and intestinal epithelial barrier function. We designed this study to investigate the hypothesis that Cav-1 expression is altered in the bowel of patients with Hirschsprung’s disease (HSCR).

Methods

HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control samples were obtained at the time of colostomy closure in patients with imperforate anus (n = 10). qRT-PCR analysis was undertaken to quantify Cav-1 gene expression, and Western blot analysis was undertaken to determine Cav-1 protein quantification. Immunolabelling of Cav-1 proteins was visualized using confocal microscopy.

Results

qRT-PCR and Western blot analysis revealed that Cav-1 was significantly downregulated in the aganglionic and ganglionic colon of patients with HSCR compared to controls (p < 0.01). Confocal microscopy revealed a markedly decreased expression of Cav-1 in colonic epithelium of aganglionic and ganglionic bowel of patients with HSCR compared to controls.

Conclusion

To our knowledge, this is the first report of significantly decreased Cav-1 expression in patients with HSCR. Decreased expression of Cav-1 in the bowel of HSCR may increase susceptibility to HAEC in HSCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murphy FM, Puri MP (2008) Enterocolitis complicating Hirschsprung’s disease. In: Puri P (ed) Hischsprung’s disease and allied disorders. Springer, Berlin, pp 133–143

    Chapter  Google Scholar 

  2. Gosain A (2016) Established and emerging concepts in Hirschsprung’s-associated enterocolitis. Pediatr Surg Int 32:313–320

    Article  PubMed  PubMed Central  Google Scholar 

  3. Demehri FR, Halaweish IF, Coran AG, Teitelbaum DH (2013) Hirschsprung-associated enterocolitis: pathogenesis, treatment and prevention. Pediatr Surg Int 29:873–881

    Article  PubMed  Google Scholar 

  4. Chokshi NK, Guner YS, Hunter CJ, Upperman JS, Grishin A, Ford HR (2008) The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis. Semin Perinatol 32:92–99

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grishin A, Bowling J, Bell B, Wang J, Ford HR (2016) Roles of nitric oxide and intestinal microbiota in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 51:13–17

    Article  PubMed  Google Scholar 

  6. Kolb E (1991) Current knowledge on the formation of nitric oxide in endothelial cells of blood vessels, in nerve cells and macrophages as well as its significance in vascular dilatation, information transmission and damage of tumor cells. Z Gesamte Inn Med 46:431–436

    CAS  PubMed  Google Scholar 

  7. Vallance BA, Dijkstra G, Qiu B, van der Waaij LA, van Goor H, Jansen PL et al (2004) Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. Am J Physiol Gastrointest Liver Physiol 287:G865–G874

    Article  CAS  PubMed  Google Scholar 

  8. Krauss H, Sosnowski P, Biczysko M, Biczysko W, Majewski P, Jablecka A et al (2011) Effects of l-arginine and NG-nitro l-arginine methyl ester (L-NAME) on ischemia/reperfusion injury of skeletal muscle, small and large intestines. Chin J Physiol 54:7–18

    Article  CAS  PubMed  Google Scholar 

  9. Hierholzer C, Kalff JC, Billiar TR, Bauer AJ, Tweardy DJ, Harbrecht BG (2004) Induced nitric oxide promotes intestinal inflammation following hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 286:G225–G233

    Article  CAS  PubMed  Google Scholar 

  10. Du Plessis J, Vanheel H, Janssen CE, Roos L, Slavik T, Stivaktas PI et al (2013) Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol 58:1125–1132

    Article  CAS  PubMed  Google Scholar 

  11. Hackam DJ (2011) Danger at the doorstep: regulation of bacterial translocation across the intestinal barrier by nitric oxide. Crit Care Med 39:2189–2190

    Article  PubMed  Google Scholar 

  12. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    Article  CAS  PubMed  Google Scholar 

  13. Cetin S, Leaphart CL, Li J, Ischenko I, Hayman M, Upperman J et al (2007) Nitric oxide inhibits enterocyte migration through activation of RhoA-GTPase in a SHP-2-dependent manner. Am J Physiol Gastrointest Liver Physiol 292:G1347–G1358

    Article  CAS  PubMed  Google Scholar 

  14. Benjamim CF, Silva JS, Fortes ZB, Oliveira MA, Ferreira SH, Cunha FQ (2002) Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect Immun 70:3602–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Binion DG, Rafiee P, Ramanujam KS, Fu S, Fisher PJ, Rivera MT et al (2000) Deficient iNOS in inflammatory bowel disease intestinal microvascular endothelial cells results in increased leukocyte adhesion. Free Radic Biol Med 29:881–888

    Article  CAS  PubMed  Google Scholar 

  16. Ford HR (2006) Mechanism of nitric oxide-mediated intestinal barrier failure: insight into the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 41:294–299

    Article  PubMed  Google Scholar 

  17. D’Souza A, Fordjour L, Ahmad A, Cai C, Kumar D, Valencia G et al (2010) Effects of probiotics, prebiotics, and synbiotics on messenger RNA expression of caveolin-1, NOS, and genes regulating oxidative stress in the terminal ileum of formula-fed neonatal rats. Pediatr Res 67:526–531

    Article  CAS  PubMed  Google Scholar 

  18. Yan M, Hou M, Liu J, Zhang S, Liu B, Wu X et al (2017) Regulation of iNOS-derived ROS generation by HSP90 and Cav-1 in porcine reproductive and respiratory syndrome virus-infected swine lung injury. Inflammation 40:1236–1244

    Article  CAS  PubMed  Google Scholar 

  19. Weiss CR, Guan Q, Ma Y, Qing G, Bernstein CN, Warrington RJ et al (2015) The potential protective role of caveolin-1 in intestinal inflammation in TNBS-induced murine colitis. PLoS One 10:e0119004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP (2004) Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 24:98–105

    Article  CAS  PubMed  Google Scholar 

  21. Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–112

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI et al (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94:1408–1417

    Article  CAS  PubMed  Google Scholar 

  24. Trane AE, Pavlov D, Sharma A, Saqib U, Lau K, van Petegem F et al (2014) Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. J Biol Chem 289:13273–13283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krajewska WM, Maslowska I (2004) Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 9:195–220

    CAS  PubMed  Google Scholar 

  26. Williams TM, Lisanti MP (2004) The Caveolin genes: from cell biology to medicine. Ann Med 36:584–595

    Article  CAS  PubMed  Google Scholar 

  27. Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G et al (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367

    Article  CAS  PubMed  Google Scholar 

  29. Le Saux CJ, Teeters K, Miyasato SK, Hoffmann PR, Bollt O, Douet V et al (2008) Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodeling. J Biol Chem 283:5760–5768

    Article  CAS  PubMed  Google Scholar 

  30. Wang XM, Kim HP, Nakahira K, Ryter SW, Choi AM (2009) The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol 182:3809–3818

    Article  CAS  PubMed  Google Scholar 

  31. Tomuschat C, O’Donnell AM, Coyle D, Dreher N, Kelly D, Puri P (2017) NOS-interacting protein (NOSIP) is increased in the colon of patients with Hirschsprungs’s disease. J Pediatr Surg 52:772–777

    Article  PubMed  Google Scholar 

  32. Sorrells DL, Friend C, Koltuksuz U, Courcoulas A, Boyle P, Garrett M et al (1996) Inhibition of nitric oxide with aminoguanidine reduces bacterial translocation after endotoxin challenge in vivo. Arch Surg 131:1155–1163

    Article  CAS  PubMed  Google Scholar 

  33. Guner YS, Ochoa CJ, Wang J, Zhang X, Steinhauser S, Stephenson L et al (2009) Peroxynitrite-induced p38 MAPK pro-apoptotic signaling in enterocytes. Biochem Biophys Res Commun 384:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Potoka DA, Upperman JS, Zhang XR, Kaplan JR, Corey SJ, Grishin A et al (2003) Peroxynitrite inhibits enterocyte proliferation and modulates Src kinase activity in vitro. Am J Physiol Gastrointest Liver Physiol 285:G861–G869

    Article  CAS  PubMed  Google Scholar 

  35. Wendel M, Heller AR (2010) Mitochondrial function and dysfunction in sepsis. Wien Med Wochenschr 160:118–123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H., O’Donnell, A.M., Tomuschat, C. et al. Altered expression of caveolin-1 in the colon of patients with Hirschsprung’s disease. Pediatr Surg Int 35, 929–934 (2019). https://doi.org/10.1007/s00383-019-04505-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-019-04505-1

Keywords

Navigation