Skip to main content
Log in

Cajal-like cells in the upper urinary tract: comparative study in various species

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

The interstitial cells of Cajal (ICC) play an important role in the control of gut motility. The recognition that the ICC cell membrane harbors the c-kit receptor (CD117) sparked rapid advancement in ICC research on the gut and certain pathologies using immunochemical and molecular methods. The question arises whether ICC exist in the upper urinary tract (UUT) and trigger motility. The present study analyzed the distribution of the c-kit receptor in the normal human UUT compared with various species. Immunohistochemistry (alkaline-phosphatase–anti-alkaline-phosphatase technique, immunofluorescence) was applied on serial sections using monoclonal and polyclonal antibodies recognizing the c-kit receptor. C-kit staining was compared with standard endothelial, epithelial, neurogenic, histiocytic, mast cell, and smooth muscle markers, as well as a negative control. Normal proximal, middle, and distal ureter segments were analyzed in rodents, carnivores, porcines, cow, and humans. In all species the c-kit receptor was detected in either round or spindle-shaped cells. Because of their antigenic profile, the round cells were identified as mast cells occurring in all layers of the ureteral wall except the urothelium and were more frequent in humans. In contrast, the population of spindle-shaped cells was marked only by anti-c-kit receptor antibodies, thus resembling ICC. These ICC-like cells were found among the inner and outer smooth muscle layers and in the lamina propria of all species. In humans, spindle-shaped cells were also found vertically oriented within the urothelium. Our morphological data present for the first time the distribution of ICC in the UUT of various species. The ubiquitous distribution in the entire pyeloureteral complex provides strong evidence that ICC generate electrical pacemaker activity within the UUT as an intrinsic system. Animal studies may help to understand the physiological importance of these ICC-like cells. The significance of these findings needs to be evaluated by functional studies and investigations of certain congenital pathologies with disturbance of the urinary outflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Santicioli P, Maggi CA (1998) Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev 50:683

    Google Scholar 

  2. Klemm MF, Exintaris B, Lang RI (1999) Identification of the cells underlying pacemaker activity in the guineapig upper urinary tract. J Physiol 519(Pt)3:867

    CAS  PubMed  Google Scholar 

  3. Gosling JA, Dixon JS (1974) Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11:418

    CAS  PubMed  Google Scholar 

  4. Constantinou CE (1974) Renal pelvic pacemaker control of ureteral peristaltic rate. Am J Physiol 226:1413

    CAS  PubMed  Google Scholar 

  5. Lang RJ, Exintaris B, Teele ME, et al. (1998) Electrical basis of peristalsis in the mammalian upper urinary tract. Clin Exp Pharmacol Physiol 25:310

    CAS  PubMed  Google Scholar 

  6. Shafik A (1996) Electroureterogram human study of the electromechanical activity of the ureter. Urology 48:696

    CAS  PubMed  Google Scholar 

  7. Kim YC, Koh SD, Sanders KM (2002) Voltage-dependent inward currents of interstitial cells of Cajal from murine colon and small intestine. J Physiol 541:797

    CAS  PubMed  Google Scholar 

  8. Huizinga JD, Thuneberg L, Kluppel M, et al. (1995) Wildt gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347

    CAS  PubMed  Google Scholar 

  9. Torihashi S, Ward SM, Nishikawa S, et al. (1995) C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 280:97

    CAS  PubMed  Google Scholar 

  10. Lammie A, Drobnjak M, Gerald W, et al. (1994) Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 42:1417

    CAS  PubMed  Google Scholar 

  11. Hagger R, Gharaie S, Finlayson C, et al. (1998) Regional and transmural density of interstitial cells of Cajal in human colon and rectum. Am J Physiol 275:G1309

    CAS  PubMed  Google Scholar 

  12. Hagger R, Gharaie S, Finlayson C, et al. (1998) Distribution of the interstitial cells of Cajal in the human anorectum. J Auton Nerv Syst 73:75

    CAS  PubMed  Google Scholar 

  13. Kenny SE, Connell G, Woodward MN, et al. (1999) Ontogeny of interstitial cells of Cajal in the human intestine. J Pediatr Surg 34:1241

    Google Scholar 

  14. Streutker CJ, Huizinga JD, Campbell F, et al. (2003) Loss of CDl17 (c-kit)- and CD34-positive ICC and associated CD34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol 27:228

    CAS  PubMed  Google Scholar 

  15. Rolle U, Piotrowska AP, Nemeth L, et al. (2002) Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch Pathol Lab Med 126:928

    PubMed  Google Scholar 

  16. Rolle U, Yoneda A, Solari V, et al. (2002) Abnormalities of c-kit-positive cellular network in isolated hypoganglionosis. J Pediatr Surg 37:709

    Google Scholar 

  17. Yamataka A, Kato Y, Tibboel D, et al. (1995) A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg 30:441

    Google Scholar 

  18. Isozaki K, Hirota S, Miyagawa I, et al. (1997) Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol 92:332

    CAS  PubMed  Google Scholar 

  19. Vanderwinden IM, Liu H, De Laet MH, et al. (1996) Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology 111:279

    CAS  PubMed  Google Scholar 

  20. Vanderwinden IM, Rumessen II, Liu H, et al. (1996) Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 111:901

    CAS  PubMed  Google Scholar 

  21. Isozaki K, Hirota S, Nakama A, et al. (1995) Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in WsIWs mutant rats. Gastroenterology 109:456

    CAS  PubMed  Google Scholar 

  22. Ward SM, Burns AI, Torihashi S, et al. (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480 (Part 1):91

    CAS  PubMed  Google Scholar 

  23. Pezzone MA, Watkins SC, Alber SM, et al. (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol 284:F925–F929

    Google Scholar 

  24. Der-Silaphet T, Malysz J, Hagel S, et al. (1998) Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114:724

    CAS  PubMed  Google Scholar 

  25. Metzger R, Schuster T, Till H, et al. (2004) Cajal-like cells in the human upper urinary tract. J Urol 172:769

    Article  Google Scholar 

  26. Cordell JL, Falini B, Erber WN, et al. (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (AP AAP complexes). J Histochem Cytochem 32:219

    CAS  PubMed  Google Scholar 

  27. Aldenborg F, Peeker R, Fall M, et al. (1998) Metaplastic transformation of urinary bladder epithelium: effect on mast cell recruitment, distribution, and phenotype expression. Am J Pathol 153:149

    CAS  PubMed  Google Scholar 

  28. Drew E, Merkens H, Chelliah S, et al. (2002) CD34 is a specific marker of mature murine mast cells. Exp Hematol 30:1211

    Google Scholar 

  29. Jerde TJ, Saban R, Bjorling DE, et al. (2000) Distribution of neuropeptides, histamine content, and inflammatory cells in the ureter. Urology 56:173

    CAS  PubMed  Google Scholar 

  30. Metzger R, Bohle RM, Chumachenko P, et al. (2000) CD143 in the development of atherosclerosis. Atherosclerosis 150:21

    CAS  PubMed  Google Scholar 

  31. Mikkelsen HB, Malysz J, Huizinga JD, et al. (1998) Action potential generation, kit receptor immunohistochemistry and morphology of steel-Dickie (Sl/Sld) mutant mouse small intestine. Neurogastroenterol Motil 10:11

    CAS  PubMed  Google Scholar 

  32. Huizinga JD, Robinson TL, Thomsen L (2000) The search for the origin of rhythmicity in intestinal contraction; from tissue to single cells. Neurogastroenterol Motil 12:3

    Google Scholar 

  33. Notley RG (1968) Electron microscopy of the upper ureter and the pelvi-ureteric junction. Br J Urol 40:37

    CAS  PubMed  Google Scholar 

  34. Hoyes AD, Barber P, Martin BG (1975) Comparative ultrastructure of ureteric innervation. Cell Tissue Res 160:515

    CAS  PubMed  Google Scholar 

  35. Gosling JA, Dixon JS (1971) Morphologic evidence that rhe renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat 130:393

    CAS  PubMed  Google Scholar 

  36. Rolle U, Brylla E, Tillig B (1999) Immunohistochemical detection of neuronal plexuses and nerve cells within the upper urinary tract of pigs. BJU Int 83:1045

    Google Scholar 

  37. Edyvane KA, Trussell DC, Jonavicius J, et al. (1992) Presence and regional variation in peptide-containing nerves in the human ureter. J Auton Nerv Syst 39:127

    CAS  PubMed  Google Scholar 

  38. Maeda H, Yamagata A, Nishikawa S, et al. (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369

    CAS  PubMed  Google Scholar 

  39. Kenny SE, Connell MG, Rintala RJ, et al. (1998) Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg 33:130

    Google Scholar 

  40. Masumoto K, Suita S, Nada O, et al. (1999) Abnormalities of enteric neurons, intestinal pacemaker cells, and smooth muscle in human intestinal atresia. J Pediatr Surg 34:1463

    Article  CAS  PubMed  Google Scholar 

  41. Masumoto K, Suita S, Nada O, et al. (1999) Alterations of the intramural nervous distributions in a chick intestinal atresia model. Pediatr Res 45:30

    CAS  PubMed  Google Scholar 

  42. Yamataka A, Ohshiro K, Kobayashi H, et al. (1998) Abnormal distribution of intestinal pacemaker (C-KIT positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg 33:859

    Google Scholar 

  43. Kenny SE, Vanderwinden IM, Rintala RJ, et al. (1998) Delayed maturation of the interstitial cells of Cajal: a new diagnosis for transient neonatal pseudoobstruction. Report of two cases. J Pediatr Surg 33:94

    Google Scholar 

  44. Wang ZQ, Watanabe Y, Toki A, et al. (2000) Involvement of endogenous nitric oxide and c-kit-expressing cells in chronic intestinal pseudo-obstruction. J Pediatr Surg 35:539

    Google Scholar 

  45. He CL, Burgart L, Wang L, et al. (2000) Decreased interstitial cell of Cajal volume in patients with slow-transit constipation. Gastroenterology 118:14

    CAS  PubMed  Google Scholar 

  46. Altdorfer K, Bagameri G, Donath T, et al. (2002) Nitric oxide synthase immunoreactivity of interstitial cells of Cajal in experimental colitis. Inflamm Res 51:569

    CAS  PubMed  Google Scholar 

  47. Hagger R, Finlayson C, Kahn F, et al. (2000) A deficiency of interstitial cells of Cajal in Chagasic megacolon. J Auton Nerv Syst 80:108

    CAS  PubMed  Google Scholar 

  48. Der T, Bercik P, Donnelly G, et al. (2000) Interstitial cells of Cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology 119:1590

    CAS  PubMed  Google Scholar 

  49. Yamataka A, Yamataka T, Lane GI, et al. (1998) Necrotizing enterocolitis and C-KIT. J Pediatr Surg 33:1682

    Google Scholar 

  50. Wang XY, Berezin I, Mikkelsen HB, et al. (2002) Pathology of interstitial cells of Cajal in relation to inflammation revealed by ultrastructure but not immunohistochemistry. Am J Pathol 160:1529

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Metzger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, R., Schuster, T., Till, H. et al. Cajal-like cells in the upper urinary tract: comparative study in various species. Ped Surgery Int 21, 169–174 (2005). https://doi.org/10.1007/s00383-004-1314-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-004-1314-4

Keywords