Skip to main content

Advertisement

Log in

Performance ranking of multiple CORDEX-SEA sensitivity experiments: towards an optimum choice of physical schemes for RegCM over Southeast Asia

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study conducted and evaluated 44 experiments using the non-hydrostatic version of the regional climate model RegCM4 (RegCM4-NH) and an additional three experiments with RegCM version 5 (RegCM5) over Southeast Asia for the period 2010–2015. The initiative was part of the coordinated regional climate downscaling experiment—Southeast Asia (CORDEX-SEA) project, in preparation for downscaling the latest coupled model intercomparison project Phase 6 (CMIP6) global climate models (GCMs). The RegCM4-NH experiments, forced by the ERA5 reanalysis, were configured using combinations of four cumulus, three planetary boundary layer (PBL), and three explicit moisture schemes. The spatiotemporal variability of simulated 2 m-temperature and rainfall for 2010–2015 was evaluated against observational datasets. The best experiments demonstrated reasonable reproduction of observed annual cycles and spatial distribution, while many exhibited unrealistic biases. A score ranking system was implemented to objectively compare the performance of experiments, enabling the identification of top-ranked experiments for Southeast Asia. The ensemble mean of the 44 RegCM4-NH experiments exhibited commendable performance, ranking 11th overall. Furthermore, the three additional RegCM5 experiments did not yield improved results compared to RegCM4-NH under the same physical configuration, suggesting that opting for RegCM4-NH would be a prudent choice for the CORDEX-SEA community in the forthcoming CMIP6 downscaling cycle for Southeast Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The outputs from the sensitivity experiments conducted for this study and used for the analysis can be made available upon request.

References

  • Bretherton CS, McCaa JR, Grenier H (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Mon Weather Rev 132(4):864–882. https://doi.org/10.1175/1520-0493(2004)132%3c0864:ANPFSC%3e2.0.CO;2

    Article  Google Scholar 

  • Chang C-P, Wang Z, McBride J, Liu C-H (2005) Annual cycle of Southeast Asia—maritime continent rainfall and the asymmetric monsoon transition. J Clim 18(2):287–301. https://doi.org/10.1175/JCLI-3257.1

    Article  Google Scholar 

  • Chung JX, Juneng L, Tangang F, Jamaluddin AF (2018) Performances of BATS and CLM land-surface schemes in RegCM4 in simulating precipitation over CORDEX Southeast Asia domain. Int J Climatol 38(2):794–810. https://doi.org/10.1002/joc.5211

    Article  Google Scholar 

  • Chung JX, Juneng L, Santisirisomboon G, Ngo-Duc T, Phan-Van T, Trinh-Tuan L, Cruz F, Dado J, Srisawadwong R, Gunawan D, McGregor JL, Sasaki H, Murata A, Ngai ST, Singhruck P, Mohd MSF, Aldrian E, Salimun E, Tangang F (2023) Future changes in mean and extreme precipitation over Peninsular Malaysia using CORDEX-SEA 5 km simulations. APN Sci Bull 13(1):263–276. https://doi.org/10.30852/sb.2023.2348

    Article  Google Scholar 

  • Coppola E, Stocchi P, Pichelli E, Torres Alavez JA, Glazer R, Giuliani G, Di Sante F, Nogherotto R, Giorgi F (2021) Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains. Geosci Model Dev 14(12):7705–7723. https://doi.org/10.5194/gmd-14-7705-2021

    Article  Google Scholar 

  • Coppola E, Giorgi F, Giuliani G, Pichelli E, Ciarlo JM, Raffaele F, Nogherotto R, Reboita MS, Lu C, Zazulie N, Vargas-Heinz L, Cardoso AA, de Leeuw J (2024) The fifth generation regional climate modeling system, RegCM5: the first CP European wide simulation and validation over the CORDEX-CORE domains. J Geophysl Res Atmos. https://doi.org/10.2541/essoar.170542078.80092084/v1

    Article  Google Scholar 

  • Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100(1):32–74. https://doi.org/10.1007/BF01448839

    Article  Google Scholar 

  • Cruz FT, Sasaki H, Narisma GT (2016) Assessing the sensitivity of the non-hydrostatic regional climate model to boundary conditions and convective schemes over the Philippines. J Meteorol Soc Jpn Ser II 94A:165–179. https://doi.org/10.2151/jmsj.2015-059

    Article  Google Scholar 

  • Cruz FT, Narisma GT, Dado JB, Singhruck P, Tangang F, Linarka UA, Wati T, Juneng L, Phan-Van T, Ngo-Duc T, Santisirisomboon J, Gunawan D, Aldrian E (2017) Sensitivity of temperature to physical parameterization schemes of RegCM4 over the CORDEX-Southeast Asia region. Int J Climatol 37(15):5139–5153. https://doi.org/10.1002/joc.5151

    Article  Google Scholar 

  • Desmet Q, Ngo-Duc T (2022) A novel method for ranking CMIP6 global climate models over the southeast Asian region. Int J Climatol. https://doi.org/10.1002/joc.7234

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR community climate model. National Center for Atmospheric Research, Boulder, Colorado

    Google Scholar 

  • Doan VQ, Kusaka H (2018) Projections of urban climate in the 2050s in a fast-growing city in Southeast Asia: the greater Ho Chi Minh City metropolitan area, Vietnam. Intn J Climatol 38(11):4155–4171. https://doi.org/10.1002/joc.5559

    Article  Google Scholar 

  • Doan VQ, Kusaka H, Nguyen TM (2019) Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: numerical experiments with a regional climate model. Sustain Cities Soc 47:101479. https://doi.org/10.1016/j.scs.2019.101479

    Article  Google Scholar 

  • Doan Q, Dipankar A, Simón-Moral A, Sanchez C, Prasanna V, Roth M, Huang X (2021) Urban-induced modifications to the diurnal cycle of rainfall over a tropical city. Q J R Meteorol Soc 147(735):1189–1201. https://doi.org/10.1002/qj.3966

    Article  Google Scholar 

  • Doan Q, Chen F, Kusaka H, Dipankar A, Khan A, Hamdi R, Roth M, Niyogi D (2022) Increased risk of extreme precipitation over an urban agglomeration with future global warming. Earth’s Future. https://doi.org/10.1029/2021EF002563

    Article  Google Scholar 

  • Emanuel KA, Živković-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782. https://doi.org/10.1175/1520-0469(1999)056%3c1766:DAEOAC%3e2.0.CO;2

    Article  Google Scholar 

  • Gianotti RL, Eltahir EAB (2013) Regional climate modeling over the maritime continent. Part II: new parameterization for autoconversion of convective rainfall. J Clim 27(4):1504–1523. https://doi.org/10.1175/JCLI-D-13-00171.1

    Article  Google Scholar 

  • Giorgi F (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104(D6):6335–6352. https://doi.org/10.1029/98JD02072

    Article  Google Scholar 

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Res Atmos 124(11):5696–5723. https://doi.org/10.1029/2018JD030094

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Giorgi F, Coppola E, Giuliani G, Ciarlo JM, Pichelli E, Nogherotto R, Raffaele F, Malguzzi P, Davolio S, Stocchi P, Drof O (2023) The fifth generation regional climate modeling system, RegCM5: description and illustrative examples at parameterized convection and convection-permitting resolutions. J Geophys Res Atmos. https://doi.org/10.1029/2022JD038199

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121(3):764–787. https://doi.org/10.1175/1520-0493(1993)121%3c0764:PEOAUB%3e2.0.CO;2

    Article  Google Scholar 

  • Güttler I, Branković Č, O’Brien TA, Coppola E, Grisogono B, Giorgi F (2014) Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterisation. Clim Dyn 43(7–8):1753–1772. https://doi.org/10.1007/s00382-013-2003-6

    Article  Google Scholar 

  • Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26(4):520–533. https://doi.org/10.1175/WAF-D-10-05038.1

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Herrmann M, Ngo-Duc T, Trinh-Tuan L (2020) Impact of climate change on sea surface wind in Southeast Asia, from climatological average to extreme events: results from a dynamical downscaling. Clim Dyn 54(3–4):2101–2134. https://doi.org/10.1007/s00382-019-05103-6

    Article  Google Scholar 

  • Herrmann M, Nguyen-Duy T, Ngo-Duc T, Tangang F (2022) Climate change impact on sea surface winds in Southeast Asia. Int J Climatol 42(7):3571–3595. https://doi.org/10.1002/joc.7433

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hijioka Y, Lin E, Pereira JJ, Corlett RT, Cui X, Insarov GE, Lasco RD, Lindgren E, Surjan A (2014) Asia. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Gima B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Italy

    Google Scholar 

  • Holtslag AAM, De Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575. https://doi.org/10.1175/1520-0493(1990)118%3c1561:AHRAMT%3e2.0.CO;2

    Article  Google Scholar 

  • Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120. https://doi.org/10.1175/1520-0493(2004)132%3c0103:ARATIM%3e2.0.CO;2

    Article  Google Scholar 

  • Im E-S, Ahn J-B, Remedio AR, Kwon W-T (2008) Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: Focus on the Korean peninsula. Int J Climatol 28(14):1861–1877. https://doi.org/10.1002/joc.1664

    Article  Google Scholar 

  • IPCC (2021) Climate change 2021: the physical science basis. In: Msson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y (eds) Contribution of working group I to the Sixth assessment report of the intergovernmental panel on climate change. IPCC, Italy

    Google Scholar 

  • IPCC-SRES (2000) Special report on emissions scenarios (N. Nakicenovic & R. Swart, Eds.). Cambridge University Press, UK

    Google Scholar 

  • Janjić ZI (2002) Nonsingular implementation of the mellor–yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 60

  • Juneng L, Tangang F, Chung JX, Ngai ST, Tay TW, Narisma G, Cruz F, Phan-Van T, Ngo-Duc T, Santisirisomboon J, Singhruck P, Gunawan D, Aldrian E (2016) Sensitivity of Southeast Asia rainfall simulations to cumulus and air–sea flux parameterizations in RegCM4. Climate Res 69(1):59–77. https://doi.org/10.3354/cr01386

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2

    Article  Google Scholar 

  • Kalmár T, Pieczka I, Pongrácz R (2021) A sensitivity analysis of the different setups of the RegCM4.5 model for the Carpathian region. Int J Climatol. https://doi.org/10.1002/joc.6761

    Article  Google Scholar 

  • Kang S, Im E-S, Eltahir EAB (2019) Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent. Clim Dyn 52(1–2):747–764. https://doi.org/10.1007/s00382-018-4164-9

    Article  Google Scholar 

  • Katzfey J, Nguyen K, McGregor J, Hoffmann P, Ramasamy S, Nguyen HV, Khiem MV, Nguyen TV, Truong KB, Vu TV, Nguyen HT, Thuc T, Phong DH, Nguyen BT, Phan-Van T, Nguyen-Quang T, Ngo-Duc T, Trinh-Tuan L (2016) High-resolution simulations for Vietnam - methodology and evaluation of current climate. Asia-Pac J Atmos Sci 52(2):91–106. https://doi.org/10.1007/s13143-016-0011-2

    Article  Google Scholar 

  • Kiehl JT (1996) Description of the NCAR community climate model (CCM3). Boulder, Colorado: Tech. Note, NCAR/TN-420+STR

  • Manomaiphiboon K, Octaviani M, Torsri K, Towprayoon S (2013) Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios. Climate Res 58(2):97–115. https://doi.org/10.3354/cr01188

    Article  Google Scholar 

  • McGregor JL, Nguyen KC, Kirono DGC, Katzfey JJ (2016) High-resolution climate projections for the islands of Lombok and Sumbawa, Nusa Tenggara Barat Province, Indonesia: challenges and implications. Clim Risk Manag 12:32–44. https://doi.org/10.1016/j.crm.2015.10.001

    Article  Google Scholar 

  • Ngai ST, Sasaki H, Murata A, Nosaka M, Chung JX, JunengSupari L, SalimunTangang EF (2020) Extreme rainfall projections for Malaysia at the end of 21st century using the high resolution non-hydrostatic regional climate model (NHRCM). SOLA 16:132–139. https://doi.org/10.2151/sola.2020-023

    Article  Google Scholar 

  • Ngai ST, Juneng L, Tangang F, Chung JX, Supari S, Salimun E, Cruz F, Ngo-Duc T, Phan-Van T, Santisirisomboon J, Gunawan D (2022) Projected mean and extreme precipitation based on bias-corrected simulation outputs of CORDEX Southeast Asia. Weather Clim Extrem 37:100484. https://doi.org/10.1016/j.wace.2022.100484

    Article  Google Scholar 

  • Ngo-Duc T, Kieu C, Thatcher M, Nguyen-Le D, Phan-Van T (2014) Climate projections for Vietnam based on regional climate models. Climate Res 60(3):199–213. https://doi.org/10.3354/cr01234

    Article  Google Scholar 

  • Ngo-Duc T, Tangang FT, Santisirisomboon J, Cruz F, Trinh-Tuan L, Nguyen-Xuan T, Phan-Van T, Juneng L, Narisma G, Singhruck P, Gunawan D, Aldrian E (2017) Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region. Int J Climatol 37(3):1634–1647. https://doi.org/10.1002/joc.4803

    Article  Google Scholar 

  • Nguyen-Duy T, Ngo-Duc T, Desmet Q (2023) Performance evaluation and ranking of CMIP6 global climate models over Vietnam. J Water Clim Change 14(6):1831–1846. https://doi.org/10.2166/wcc.2023.454

    Article  Google Scholar 

  • Nguyen-Le D, Matsumoto J, Ngo-Duc T (2014) Climatological onset date of summer monsoon in Vietnam. Int J Climatol 34(11):3237–3250. https://doi.org/10.1002/joc.3908

    Article  Google Scholar 

  • Nguyen-Thanh H, Ngo-Duc T, Herrmann M (2023) The distinct impacts of the two types of ENSO on rainfall variability over Southeast Asia. Clim Dyn 61(5–6):2155–2172. https://doi.org/10.1007/s00382-023-06673-2

    Article  Google Scholar 

  • Nogherotto R, Tompkins AM, Giuliani G, Coppola E, Giorgi F (2016) Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects. Geosci Model Dev 9(7):2533–2547. https://doi.org/10.5194/gmd-9-2533-2016

    Article  Google Scholar 

  • O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

    Article  Google Scholar 

  • Octaviani M, Manomaiphiboon K (2011) Performance of regional climate model RegCM3 over Thailand. Clim Res 47(3):171–186. https://doi.org/10.3354/cr00990

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM et al (2013) Technical description of version 4.5 of the community land model (CLM). NCAR Earth System Laboratory-Climate and Global Dynamics Division, Boulder, Colorado

    Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105(D24):29579–29594. https://doi.org/10.1029/2000JD900415

    Article  Google Scholar 

  • Phan V, Ngo-Duc T, Ho T (2009) Seasonal and interannual variations of surface climate elements over Vietnam. Clim Res 40:49–60. https://doi.org/10.3354/cr00824

    Article  Google Scholar 

  • Rahmat R, Archevarahuprok B, Kang CP, Xiang CJ, Hein D, Gunawan D, Buonomo E, Redmond G, Sidup H, Sirabaha H, Swe H, Dash I, Yee JLS, Rizal J, Sitthichivapak K, Subramaniam K, Dagar L, Neng LJ, Kwok LL, van Hoa V (2014) A regional climate modelling experiment for Southeast Asia. SEACAM (Southeast Asia climate analysis and modelling) project’s final report. Centre for Climate Research in Singapore Hadley Centre, Singapore

    Google Scholar 

  • Simón-Moral A, Dipankar A, Doan Q, Sanchez C, Roth M, Becker E, Huang X (2021) Urban intensification of convective rainfall over the Singapore—Johor Bahru region. Q J R Meteorol Soc 147(740):3665–3680. https://doi.org/10.1002/qj.4147

    Article  Google Scholar 

  • Supari, Tangang F, Juneng L, Cruz F, Chung JX, Ngai ST, Salimun E, Mohd MSF, Santisirisomboon J, Singhruck P, PhanVan T, Ngo-Duc T, Narisma G, Aldrian E, Gunawan D, Sopaheluwakan A (2020) Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environ Res. https://doi.org/10.1016/j.envres.2020.109350

    Article  Google Scholar 

  • Tangang F, Chung JX, Juneng L, Supari, Salimun E, Ngai ST, Jamaluddin AF, Mohd MSF, Cruz F, Narisma G, Santisirisomboon J, Ngo-Duc T, Van Tan P, Singhruck P, Gunawan D, Aldrian E, Sopaheluwakan A, Grigory N, Remedio ARC, Kumar P (2020) Projected future changes in rainfall in Southeast Asia based on CORDEX–SEA multi-model simulations. Clim Dyn 55(5–6):1247–1267. https://doi.org/10.1007/s00382-020-05322-2

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. https://doi.org/10.1175/1520-0493(1989)117%3c1779:ACMFSF%3e2.0.CO;2

    Article  Google Scholar 

  • Tran-Anh Q, Ngo-Duc T, Espagne E, Trinh-Tuan L (2022) A high-resolution projected climate dataset for Vietnam: Construction and preliminary application in assessing future change. J Water Clim Change 13(9):3379–3399. https://doi.org/10.2166/wcc.2022.144

    Article  Google Scholar 

  • Tran-Anh Q, Ngo-Duc T, Espagne E, Trinh-Tuan L (2023) A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam Climate. Sci. Data 10:257. https://doi.org/10.1038/s41597-023-02159-2

  • Van Khiem M, Redmond G, McSweeney C, Thuc T (2014) Evaluation of dynamically downscaled ensemble climate simulations for Vietnam. Int J Climatol 34(7):2450–2463. https://doi.org/10.1002/joc.3851

    Article  Google Scholar 

  • Villafuerte MQ, Macadam I, Daron J, Katzfey J, Cinco TA, Ares ED, Jones RG (2020) Projected changes in rainfall and temperature over the Philippines from multiple dynamical downscaling models. Int J Climatol 40(3):1784–1804. https://doi.org/10.1002/joc.6301

    Article  Google Scholar 

  • Yasutomi N, Hamada A (2011) Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Glob Environ Res V15N2:165–172

    Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteor Soc 93(9):1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

  • Zanis P, Douvis C, Kapsomenakis I, Kioutsioukis I, Melas D, Pal JS (2009) A sensitivity study of the regional climate model (RegCM3) to the convective scheme with emphasis in central eastern and southeastern Europe. Theor Appl Climatol 97(3–4):327–337. https://doi.org/10.1007/s00704-008-0075-8

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644. https://doi.org/10.1175/1520-0442(1998)011%3c2628:IOBAAF%3e2.0.CO;2

    Article  Google Scholar 

Download references

Funding

This work is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant 105.06–2021.14. Additionally, we acknowledge the support from the “High-Definition Clean Energy, Climate and Weather Forecasts for the Philippines” project of the Manila Observatory, the Asia–Pacific Network for Global Change Research (APN) support for the CARE for SEA megacities project (CRRP2023-08MY-Cruz), as well as the Malaysia Government Fund (LRGS/1/2020/UKM/01/6).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the sensitivity experiments. T. Ngo-Duc conceptualized the research and wrote the first draft of the manuscript. Data collection and analysis were performed by T. Nguyen-Duy, Q. Desmet and L. Ramu. All authors read, commented, and approved the final manuscript.

Corresponding author

Correspondence to Thanh Ngo-Duc.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3462 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo-Duc, T., Nguyen-Duy, T., Desmet, Q. et al. Performance ranking of multiple CORDEX-SEA sensitivity experiments: towards an optimum choice of physical schemes for RegCM over Southeast Asia. Clim Dyn 62, 8659–8673 (2024). https://doi.org/10.1007/s00382-024-07353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-024-07353-5

Keywords

Profiles

  1. Tung Nguyen-Duy