Skip to main content

Advertisement

Log in

Future projections of Indian summer monsoon rainfall extremes over India with statistical downscaling and its consistency with observed characteristics

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Indian summer monsoon rainfall extremes and their changing characteristics under global warming have remained a potential area of research and a topic of scientific debate over the last decade. This partially attributes to multiple definitions of extremes reported in the past studies and poor understanding of the changing processes associated with extremes. The later one results into poor simulation of extremes by coarse resolution General Circulation Models under increased greenhouse gas emission which further deteriorates due to inadequate representation of monsoon processes in the models. Here we use transfer function based statistical downscaling model with non-parametric kernel regression for the projection of extremes and find such conventional regional modeling fails to simulate rainfall extremes over India. In this conjuncture, we modify the downscaling algorithm by applying a robust regression to the gridded extreme rainfall events. We observe, inclusion of robust regression to the downscaling algorithm improves the historical simulation of rainfall extremes at a 0.25° spatial resolution, as evaluated based on classical extreme value theory methods, viz., block maxima and peak over threshold. The future projections of extremes during 2081–2100, obtained with the developed algorithm show no change to slight increase in the spatial mean of extremes with dominance of spatial heterogeneity. These changing characteristics in future are consistent with the observed recent changes in extremes over India. The proposed methodology will be useful for assessing the impacts of climate change on extremes; specifically while spatially mapping the risk to rainfall extremes over India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamowski A (2000) Regional analysis of annual maximum and partial duration flood data by nonparametric and L-moment methods. J Hydrol 229(2000):219–231

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1494

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Archer DR, Forsythe N, Fowler HJ, Shah SM (2010) Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol Earth Syst Sci 14:1669–1680

    Article  Google Scholar 

  • Benestad R (2010) Downscaling precipitation extremes. Theor Appl Climatol 100:1–21. doi:10.1007/s00704-009-0158-1

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer Series in Statistics. Springer, London

    Google Scholar 

  • Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18(34):257271

    Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge p 592

    Book  Google Scholar 

  • Drobinski P, Alonzo B, Bastin S, N. Da Silva, Muller C (2016) Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? J Geophys Res Atmos 121:3100–3119. doi:10.1002/2015JD023497

    Article  Google Scholar 

  • Dupuis DJ, Field CA (1998) A comparison of confidence intervals for generalized extreme-value distributions. J Stat Comput Simul 61, 341–360

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, London, p 436

    Book  Google Scholar 

  • Fox J (2002) Robust regression: appendix to an R and S-PLUS companion to applied regression. http://cran.r-project.org/

  • Gadgil S, Sajani S (1998) Monsoon precipitation in AMIP runs, World Climate Research Programme Report, WCRP-100, WMO/TD No. 837.E

  • Ghosh S, Vishal Luniya, Anant Gupta (2009) Trend analysis of Indian summer monsoon rainfall at different spatial scales Atmos Sci Lett 10: 285–290 (2009) doi:10.1002/asl.235

    Google Scholar 

  • Ghosh S, Das D, Kao SC, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes, Nat. Clim Change 2(2):86–91. doi:10.1038/nclimate1327

    Article  Google Scholar 

  • Goswami BN, Venugopal V, SenGupta D, Madhusudan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a Warming environment. Science 314:1442. doi:10.1126/science.1132027

    Article  Google Scholar 

  • Goyal MK, Ojha CSP, Burn DH (2011) Nonparametric statistical downscaling of temperature, precipitation, and evaporation in a semiarid region in India. J Hydrol Eng 17(5):615–627.

    Article  Google Scholar 

  • Goyal MK, Burn DH, Ojha CSP (2013) Statistical downscaling of temperatures under climate change scenarios for Thames river basin, Canada. Int J Glob Warm 4(1):13–30. doi:10.1504/IJGW.2012.047263

    Article  Google Scholar 

  • Held M, Soden BJ (2006) Robust responses of the hydrological cycle to global warming J Clim 19 5686

    Article  Google Scholar 

  • Hu Z, Latif M, Roeckner E, Bengtsson L (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys Res Lett 011550:2000. doi:10.1029/2000GL

    Google Scholar 

  • Huber PJ (1972) The 1972 Wald lecture robust statistics: a review. Ann Math Statist 43(4): 1041–1067

    Article  Google Scholar 

  • IPCC (2007), Climate change 2007: the physical science base, Contribution of working Group I to the fourth assessment report of IPCC

  • Jain S K, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Current Sci 102(1): 10

    Google Scholar 

  • Jha SK, Mariethoz G, Evans J, McCabe MF, Sharma A (2015) A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature. Water Resour Res. doi:10.1002/2014WR016729

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-years reanalysis project. Bull Am Meteorol Soc 77(3):437471

    Article  Google Scholar 

  • Kannan S, Ghosh S (2013) A nonparametric kernel regression model for downscaling multisite daily precipitation in the Mahanadi basin. Water Resour Res. doi:10.1002/wrcr.20118.

    Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Katz RW, Brush GS, Parlange MB (2005) Statistics of extreme modeling ecological disturbances. Ecol 86:1124–1134

    Article  Google Scholar 

  • Khan S, Kuhn G, Ganguly AR, Erickson DJ, Ostrouchov G (2007) Spatio-temporal variability of daily and weekly precipitation extremes in South America. Water Resour Res 43:W11424 (2007)

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J Clim 13:3760–3788

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • King, Leanna M, McLeod AI, Simonovic SP (2015) Improved weather generator algorithm for multisite simulation of precipitation and temperature. J Am Water Resour Assoc 51(5): 1305–1320. doi:10.1111/1752-1688.12307

    Article  Google Scholar 

  • Kishtawal CM, Niyogi D, Tewari M, Pielke RA Sr, Shepherd JM (2010) Urbanization signature in the observed heavy rainfall climatology over India. Int J Climatol 30:1908–1916

    Article  Google Scholar 

  • Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 118:3053–3065. doi:10.1002/jgrd.50258

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Chaudhari HS (2007) Response of the East Asian summer monsoon to doubled atmospheric CO2: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 87:1–28

    Article  Google Scholar 

  • Krishnamurthy CKB, Lall U, Kwon H-H (2009) Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J Clim. doi:10.1175/2009JCLI2896.1

    Google Scholar 

  • Kumar A, Dudhia J, Rotunno R, Niyogi D, Mohanty UC (2008) Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Q J R Meteorol Soc 134:1897–1910

    Article  Google Scholar 

  • Lal M, Nozawa, Emori T, Harasawa S, Takahashi H, Kimoto K, Abe-Ouchi M, Nakajima A, Takemura T, Numaguti A (2001) Future climate change: implications for Indian summer monsoon and its variability. Current Sci 81: 1196–1207

    Google Scholar 

  • Lee, June-Yi, Bin Wang (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119 doi:10.1007/s00382-012-1564-0

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E (2010), Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ Res Lett 5(2): 025208

    Article  Google Scholar 

  • Li H, Sheffield S, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res. doi:10.1029/2009JD012882

    Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of a lack of fit in time Series models. Biometrika 65(2):297–303. doi:10.1093/biomet/65.2.297

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 1. at site modeling. Water Resour Res 33(4):747757

    Google Scholar 

  • Maity R, Nagesh Kumar D (2008) Basin-scale stream-flow forecasting using the information of large scale atmospheric circulation phenomena. Hydrol Process 22:643–650

    Article  Google Scholar 

  • Mall RK, Gupta A, Singh R, Rathore LS (2006) Water resources and climate change-an Indian perspective. Current Sci 90 (12): 1610–1626

    Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737744

    Article  Google Scholar 

  • May W (2002) Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophys Res Lett 013808:2002. doi:10.1029/2001GL

    Google Scholar 

  • Mehrotra R, Sharma A (2005) A nonparametric non homogeneous hidden Markov model for downscaling of multisite daily rainfall occurrences’. J Geophys Res Atmos 110(16):1–13. doi:10.1029/2004JD005677

    Google Scholar 

  • Mehrotra R, Sharma A (2010) Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour Res 46:W07526. doi:10.1029/2009WR008423

    Article  Google Scholar 

  • Mehrotra R, Sharma A (2015) Correcting for systematic biases in multiple raw GCM variables across a range of timescales. J Hydrol 520: 214–223. doi:10.1016/j.jhydrol.2014.11.037

    Article  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Gabriele CH (2011) Human contribution to more-intense precipitation extremes. Nature 70:378–381. doi:10.1038/nature09763

    Article  Google Scholar 

  • Mishra V, Wallace JM, Lettenmaier DP (2012) Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys Res Lett 39:L16403. doi:10.1029/2012GL052790

    Google Scholar 

  • Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M, Krishnan R, Shah RD (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Res Atmos. doi:10.1002/2014JD021636

    Google Scholar 

  • Mondal A, Mujumdar PP (2014) Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India. J Hydrol 521: 217–231

    Article  Google Scholar 

  • Muller CJ, O’Gorman PA (2011) An energetic perspective on the regional response of precipitation to climate change. Nat Clim Change 1:266–271

    Article  Google Scholar 

  • Parthasarathy B, Rupakumar K, Munot AA (1996) Homogeneous regional summer monsoon rainfall over India: inter annual variability and teleconnections. Res Rep RR–070, ISSN, 0252–1075

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707. doi:10.1029/2008GL035143

    Article  Google Scholar 

  • Rao K, Patwardhan SK, Ashwini Kulkarni, Kamala K, Sabade SS, Krishna Kumar K (2013) Projected changes in mean and extreme precipitation indices over India using PRECIS. Glob Planet Change 113(2014) 77–90. 10.1016/j.gloplacha.2013.12.006

    Google Scholar 

  • Revadekar JV, Patwardhan SK, Rupa Kumar K (2011) Characteristic features of precipitation extremes over India in the warming scenarios. Adv Meteorol. doi:10.1155/2011/138425

    Google Scholar 

  • Salvi K, Kannan S, Ghosh S (2013) High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment. J Geophys Res Atmos. doi:10.1002/jgrd.50280

    Google Scholar 

  • Salvi K, Ghosh S, Ganguly A (2016) Credibility of statistical downscaling under nonstationary climate. Clim Dyn. doi:10.1007/s00382-015-2688-9

    Google Scholar 

  • Sarathi PP, Soumik Ghosh, Praveen Kumar (2015) Possible future projection of Indian Summer Monsoon Rainfall (ISMR) with the evaluation of model performance in coupled model inter-comparison project phase 5 (CMIP5). Glob Planet Change 129(2015): 92–106.

    Article  Google Scholar 

  • Sharif M, Burn DH (2006) Simulating climate change scenarios using an improved K-nearest neighbor model. J Hydrol 325(2006):179–196

    Article  Google Scholar 

  • Sharif M, Burn DH (2007) Improved k-nearest neighbor weather generating model. J Hydrol Eng 12 (1), 42–51

    Article  Google Scholar 

  • Sharma A, Mehrotra R, Li J, Jha S (2016) A programming tool for nonparametric system prediction using partial informational correlation and partial weights. Environ Modeling Softw 83: 271–275. doi:10.1016/j.envsoft.2016.05.021

    Article  Google Scholar 

  • Sharmilla S et al. (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models Glob. Planet Change 124:62–78. doi:10.1016/j.gloplacha.2014.11.004

    Article  Google Scholar 

  • Shashikanth K, Salvi K, Ghosh S, Rajendran K (2013) Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos Sci Lett 15(2): 79–85. doi:10.1002/asl2.466

    Google Scholar 

  • Shashikanth K, Madhusoodhanan CG, Ghosh S, Eldho TI, Rajendran K, Murtugudde R (2014) Comparing statistically downscaled simulations of Indian monsoon at different spatial resolutions. J Hydrol 519(2014):3163–3177. 10.1016/j.jhydrol.2014.10.042

    Article  Google Scholar 

  • Shastri H, Paul S, Ghosh S, Karmakar S (2015) Impacts of urbanization on Indian summer monsoon rainfall extremes. J Geophys Res Atmos 120:495–516. doi:10.1002/2014JD022061

    Article  Google Scholar 

  • Singh S, Ghosh S, Sahana AS, Vittal H, Karmakar S (2016) Do dynamic regional models add value to the global model projections of Indian monsoon? Clim Dyn. doi:10.1007/s00382-016-3147-y (in press)

    Google Scholar 

  • Sohom M, Patrick AB, Simonovic SP (2016) Uncertainty in precipitation projection under changing climate conditions: a regional case study. Am J Clim Chang 5:116–132. doi:10.4236/ajcc.2016.51012

    Article  Google Scholar 

  • Srivastav RK, Simonovic SP (2014) Multi-site, multivariate weather generator using maximum entropy bootstrap. Clim Dyn. doi:10.1007/s00382-014-2157-x

    Google Scholar 

  • Stowasser M, Annamalai H, Hafner J (2009) Response of south Asian summer monsoon to global warming: Mean and synoptic systems. J Clim 22:1014–1036

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Turner AG, Slingo JM (2009a) Sub seasonal extremes of precipitation and active-break cycles of the Indian summer monsoon in a climate change scenario. Q J R Meteorol Soc 135:549–567

    Article  Google Scholar 

  • Turner AG, Slingo JM (2009b) Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos. Sci Lett 10:152–158

    Google Scholar 

  • Turner AG, Inness PM, Slingo JM (2007) The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannaul variability. Quart J Roy Meteor Soc 133: 1143–1157

    Article  Google Scholar 

  • United Nations Office for Disaster Risk Reduction (UNISDR) (2015) Global assessment report on disaster risk reduction, ISBN/ISSN: 9789211320428$4

  • Viittal H, Ghosh S, Karmakar S, Pathak A, Murtugudde R (2016) Lack of dependence of Indian summer monsoon rainfall extremes on temperature: an observational evidence scientific reports 6. doi:10.1038/srep31039

  • Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45:W08417. doi:10.1029/2008WR007645

    Google Scholar 

  • Villarini G, Vecchi GA, Knutson TR, Smith JA (2011) Is the recorded increase in short-duration North Atlantic tropical storms spurious? J Geophys Res 116: D10114. doi:10.1029/2010JD015493

    Article  Google Scholar 

  • Vittal H, Karmakar S, Ghosh S (2013) Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950. Geophys Res Lett 40:3253–3258. doi:10.1002/grl.50631

    Article  Google Scholar 

  • Wang QJ (1990) Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. J Hydrol 120:115–124

    Article  Google Scholar 

  • Wang B, Kang IS, Lee YJ (2004) Ensemble simulations of Asian–Australian monsoon variability during 1997/1998 El Niño by 11 AGCMs. J Clim 17(4):803–818

    Google Scholar 

  • Wasko C, Sharma A (2015) Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat Geosci 8:527–529. doi:10.1038/ngeo2456

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555. doi:10.1002/2014RG000464

    Article  Google Scholar 

  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu CY (2009) Statistical downscaling of daily precipitation over Sweden using GCM output. Theor Appl Climatol 96:95–103. doi:10.1007/s00704-008-0038-0

    Article  Google Scholar 

  • Wilby et al (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf. Accessed 10 Aug 2013

  • Yatagai A et al (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteor Soc 939(1401–1415):727. doi:10.1175/BAMS-D-11-00122.1

    Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s working Group on coupled Modelling, which is responsible for CMIP, and we thank the modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison (PCMDI) provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also would like to thank APHRODITE, Japan for making available observed data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subimal Ghosh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4789 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashikanth, K., Ghosh, S., H, V. et al. Future projections of Indian summer monsoon rainfall extremes over India with statistical downscaling and its consistency with observed characteristics. Clim Dyn 51, 1–15 (2018). https://doi.org/10.1007/s00382-017-3604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3604-2

Keywords

Navigation