Skip to main content
Log in

Reinspecting two types of El Niño: a new pair of Niño indices for improving real-time ENSO monitoring

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study reinspects the dominant modes of different types of El Niño from the perspectives of monthly mean and seasonality using a combined technique referred as RC-REOF. Several features have been revealed. (1) The explained variances of eastern Pacific (EP) El Niño and central Pacific (CP) El Niño are comparable, in the ranges of 33–43 and 23–28 %, respectively. (2) This feature is more in line with the frequent occurrence of CP El Niño compared to the result from orthogonal EOF analysis in which El Niño Modoki explains a smaller variance of 11–12 %. (3) Both special patterns of EP El Niño and CP El Niño are of equatorial asymmetry that is often overlooked previously by the traditional Niño indices. Based on the features captured by the two leading RC-REOF modes, the authors propose a new pair of Niño indices referred to as Niño3b and Niño4b that have the following advantages: (1) simple calculation, (2) robust and stable relationship with the EP/CP El Niño modes, (3) more representative for Pacific decadal signals, (4) easier to distinguish ENSO types, and (5) without restriction by orthogonality, and others. The Niño3b and Niño4b indices are potentially useful for both scientific research and real-time monitoring of the two types of El Niño. Besides, an index namely Niño3.4b is also introduced to describe the hybrid ENSO events, with relatively equal covariance to EP El Niño and CP El Niño and with larger covariance at decadal time scale than index Niño3.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116. doi:10.1038/nclimate2100

    Article  Google Scholar 

  • Cai W et al (2015a) ENSO and greenhouse warming. Nat Clim Change 5:849–859. doi:10.1038/nclimate2743

    Article  Google Scholar 

  • Cai W et al (2015b) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Change 5:132–137. doi:10.1038/nclimate2492

    Article  Google Scholar 

  • Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938. doi:10.1175/BAMS-D-13-00117.1

    Article  Google Scholar 

  • Feng J, Li J (2011) Influence of El Niño Modoki on spring rainfall over South China. J Geophys Res 116:D13102. doi:10.1029/2010JD015160

    Article  Google Scholar 

  • Feng J, Li J (2013) Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J Clim 26:4773–4789. doi:10.1175/JCLI-D-12-00298.1

    Article  Google Scholar 

  • Fu C, Fletcher JO (1985) Two types of equatorial warming during El Niño. Chin Sci Bull 8:596–599 (in Chinese)

    Google Scholar 

  • Fu C, Diaz HF, Fletcher JO (1986) Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon Weather Rev 114:1716–1739

    Article  Google Scholar 

  • Graf H-F (1986) On El Niño/Southern Oscillation and Northern Hemispheric temperature. Gerlands Beitr Geophys 95:63–75

    Google Scholar 

  • Graf H-F, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J Geophys Res 117(D1):D01102. doi:10.1029/2011JD016493

    Article  Google Scholar 

  • Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238:657–659. doi:10.1126/science.238.4827.657

    Article  Google Scholar 

  • Ha Y, Zhong Z, Yang X, Sun Y (2013) Different Pacific Ocean warming decaying types and Northwest Pacific tropical cyclone activity. J Clim 26:8979–8994. doi:10.1175/JCLI-D-13-00097.1

    Article  Google Scholar 

  • Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK (2015) A tripole index for the Interdecadal Pacific Oscillation. Clim Dyn 45:3077–3090. doi:10.1007/s00382-015-2525-1

    Article  Google Scholar 

  • Horel JD (1981) A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500-mb height field. Mon Weather Rev 109:2080–2092

    Article  Google Scholar 

  • Hu C, Yang S, Wu Q (2015) An optimal index for measuring the effect of East Asian winter monsoon on China winter temperature. Clim Dyn 45:2571–2589. doi:10.1007/s00382-015-2493-5

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang H-M (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930. doi:10.1175/JCLI-D-14-00006.1

    Article  Google Scholar 

  • Iza M, Calvo N (2015) Role of stratospheric sudden warmings on the response to central Pacific El Niño. Geophys Res Lett 42:2482–2489. doi:10.1002/2014GL062935

    Article  Google Scholar 

  • Jo H-S, Yeh S-W, Lee S-K (2015) Changes in the relationship in the SST variability between the tropical Pacific and the North Pacific across the 1998/1999 regime shift. Geophys Res Lett 42:7171–7178. doi:10.1002/2015GL065049

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Karori MA, Li J, Jin F-F (2013) The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J Clim 26:4567–4582. doi:10.1175/JCLI-D-12-00324.1

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80. doi:10.1126/science.1174062

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci USA 106:20578–20583. doi:10.1073/pnas.0710860105

    Article  Google Scholar 

  • Lau K-M, Yang S (1996) The Asian monsoon and predictability of the tropical ocean-atmosphere system. Q J R Meteorol Soc 122:945–957

    Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603

    Google Scholar 

  • Li G, Ren B, Yang C, Zheng J (2010) Indices of El Niño and El Niño Modoki: an improved El Niño Modoki index. Adv Atmos Sci 27(5):1210–1220

    Article  Google Scholar 

  • Lian T, Chen D (2012) An evaluation of rotated EOF analysis and its application to tropical pacific SST variability. J Clim 25:5361–5373. doi:10.1175/JCLI-D-11-00663.1

    Article  Google Scholar 

  • Liu W, Huang B, Thorne PW, Banzon VF, Zhang H-M, Freeman E, Lawrimore J, Peterson TC, Smith TM, Woodruff SD (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4): part II. Parametric and structural uncertainty estimations. J Clim 28:931–951. doi:10.1175/JCLI-D-14-00007.1

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B, Dommenget D, Frauen C (2016) ENSO influence on the North Atlantic European climate: a non-linear and non-stationary approach. Clim Dyn. doi:10.1007/s00382-015-2951-0

    Google Scholar 

  • Marathe S, Ashok K, Swapna P, Sabin TP (2015) Revisiting El Niño Modokis. Clim Dyn 45:3527–3545. doi:10.1007/s00382-015-2555-8

    Article  Google Scholar 

  • Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the North Pacific during the recent decades. Bull Am Meteorol Soc 78:2215–2225

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982a) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • North GR, Moeng FJ, Bell TL, Cahalan RF (1982b) The latitude dependence of the variance of zonally averaged quantities. Mon Weather Rev 110:319–326

    Article  Google Scholar 

  • Parker D et al (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112:D18115

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. Int J Climatol 6:293–335

    Article  Google Scholar 

  • Ropelewski CF, Jones PD (1987) An extension of the Tahiti–Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251

    Article  Google Scholar 

  • Sun J, Wu S, Ao J (2015) Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability. Clim Dyn. doi:10.1007/s00382-015-2805-9

    Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Article  Google Scholar 

  • Vavrus S, Notaro M, Liu Z (2006) A mechanism for abrupt climate change associated with tropical Pacific SSTs. J Clim 19:242–256. doi:10.1175/JCLI3608.1

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang L, Chen W, Huang R (2007) Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate. J Geophys Res 112:D11110. doi:10.1029/2006JD008054

    Article  Google Scholar 

  • Wang L, Chen W, Huang R (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35:L20702

    Article  Google Scholar 

  • Wang L, Chen W, Zhou W, Chan JCL, Barriopedro D, Huang R (2010) Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int J Climatol 30:153–158

    Article  Google Scholar 

  • Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteorol Atmos Phys 56:33–55

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi:10.1007/s00382-008-0394-6

    Article  Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53:315–324

    Article  Google Scholar 

  • Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5259–5273. doi:10.5194/acp-12-5259-2012

    Article  Google Scholar 

  • Xie F, Li J, Tian W, Li Y, Feng J (2014a) Indo-Pacific warm pool area expansion, Modoki activity, and tropical cold-point tropopause temperature variations. Sci Rep 4:4552. doi:10.1038/srep04552

    Google Scholar 

  • Xie F, Li J, Tian W, Zhang J, Sun C (2014b) The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ Res Lett 9:064020. doi:10.1088/1748-9326/9/6/064020

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y (2007) Decadal changes in ENSO persistence barrier in SST and ocean content indices: 1958–2001. J Geophys Res 112:D13106

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2010) Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37:L15705

    Google Scholar 

  • Yu J-Y, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720. doi:10.1175/2010JCLI3688.1

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33:2105–2112. doi:10.1002/joc.3575

    Article  Google Scholar 

  • Yu J-Y, Zou Y (2013) The enhanced drying effect of central-Pacific El Niño on US winter. Environ Res Lett 8:014019. doi:10.1088/1748-9326/8/1/014019

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884. doi:10.1175/2010JCLI3171.1

    Article  Google Scholar 

  • Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi:10.1029/2012GL052483

    Article  Google Scholar 

  • Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25:7702–7777

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Key Scientific Research Plan of China (Grants 2012CB956002 and 2014CB953900), the National Natural Science Foundation of China (Grants 41375076 and 41375081), the China Special Fund for Meteorological Research in the Public Interest (Grant 201206038), the LASW State Key Laboratory Special Fund (2013LASW-A05), and the Jiangsu Collaborative Innovation Center for Climate Change. Calculations for this study were supported by the China National Supercomputer Center in Guangzhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Yang, S., Wu, Q. et al. Reinspecting two types of El Niño: a new pair of Niño indices for improving real-time ENSO monitoring. Clim Dyn 47, 4031–4049 (2016). https://doi.org/10.1007/s00382-016-3059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3059-x

Keywords