Skip to main content

Advertisement

Log in

Intraseasonal variability of the Atlantic Intertropical Convergence Zone during austral summer and winter

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Atlantic Intertropical Convergence Zone (A-ITCZ) exhibits variations on several time-scales and plays a crucial role in precipitation regimes of northern South America and western Africa. Here we investigate the variability of the A-ITCZ on intraseasonal time-scales during austral summer (November–March) and winter (May–September) based on a multivariate index that describes the main atmospheric features of the A-ITCZ and retains its variability on interannual, semiannual, and intraseasonal time-scales. This index is the time coefficient of the first combined empirical orthogonal function mode of anomalies (annual cycle removed) of precipitation, and zonal and meridional wind components at 850 hPa from the climate forecast system reanalysis (1979–2010). We examine associations between the intraseasonal variability of the A-ITCZ and the activity of the Madden–Julian oscillation (MJO). We show that during austral summer intraseasonal variability of the A-ITCZ is associated with a Rossby wave train in the Northern Hemisphere. In austral winter this variability is associated with the propagation of a Rossby wave in the Southern Hemisphere consistent with the Pacific-South American pattern. Moreover, we show that intense A-ITCZ events on intraseasonal time-scales are more frequent during the phase of MJO characterized by convection over western Pacific and suppression over the Indian Ocean. These teleconnection patterns induce anomalies in the trade winds and upper level divergence over the equatorial Atlantic that modulate the intensity of the A-ITCZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Asnani GC (1993) Tropical meteorology. Prof. CG Asnani, Pune

    Google Scholar 

  • Becker EJ, Berbery EH, Higgins RW (2011) Modulation of cold-season U.S. daily precipitation by the Madden–Julian oscillation. J Clim 24:5157–5166. doi:10.1175/2011JCLI4018.1

    Article  Google Scholar 

  • Burpee RW (1972) The origin and structure of easterly waves in the lower troposphere of North Africa. J Atmos Sci 29:77–90

    Article  Google Scholar 

  • Burpee RW (1974) Characteristics of North African easterly waves during the summers of 1968 and 1969. J Atmos Sci 31:1556–1570

    Article  Google Scholar 

  • Carlson TN (1969) Some remarks on African disturbances and their progress over the Tropical Atlantic. Mon Weather Rev 97(10):716–726

    Article  Google Scholar 

  • Carvalho MAV, Oyama MD (2013) Variabilidade da largura e intensidade da Zona de Convergência Intertropical Atlântica: aspectos observacionais. Rev Bras Meteorol 28(3):305–316

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15:2377–2394

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108

    Article  Google Scholar 

  • Carvalho LMV, Silva AE, Jones C, Liebmann B, Silva Dias PL, Rocha HR (2011) Moisture transport and intraseasonal variability in the South America monsoon system. Clim Dyn 36:1865–1880

    Article  Google Scholar 

  • Chatfield C (1996) The analysis of time series: an introduction. Chapman & Hall/CRC, New York

    Google Scholar 

  • Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res. doi:10.1029/2000JD000307

    Google Scholar 

  • Citeau J, Finaud L, Cammas JP, Demarcq H (1989) Questions relative to ITCZ migrations over the tropical Atlantic Ocean, sea surface temperature and Senegal River runoff. Meteorol Atmos Phys 41:181–190

    Article  Google Scholar 

  • Cunningham CAC, Cavalcanti IFA (2006) Intraseasonal modes of variability affecting the South Atlantic convergence zone. Int J Climatol 26:1165–1180

    Article  Google Scholar 

  • De Souza EB, Ambrizzi T (2006) Modulation of the intraseasonal rainfall over tropical Brazil by the Madden–Julian oscillation. Int J Climatol 26:1759–1776

    Article  Google Scholar 

  • De Souza EB, Kayano MT, Ambrizzi T (2005) Intraseasonal and submonthly variability over the Eastern Amazon and Northeast Brazil during the autumn rainy season. Theor Appl Climatol 81:177–191

    Article  Google Scholar 

  • Diedhiou A, Janicot S, Viltard A, De Felice P, Laurent H (1999) Easterly wave regimes and associated convection over West Africa and tropical Atlantic: results from the NCEP/NCAR and ECMWF reanalyses. Clim Dyn 15:795–822

    Article  Google Scholar 

  • Enfield DB (1996) Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys Res Lett 23(23):3305–3308

    Article  Google Scholar 

  • Gill AE (1980) Some simple solution for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Grodsky SA, Carton JA (2001) Coupled land/atmosphere interactions in the West African Monsoon. Geophys Res Lett 28(8):1503–1506

    Article  Google Scholar 

  • Gu G, Adler RF (2009) Interannual variability of boreal summer rainfall in the equatorial Atlantic. Int J Climatol 29:175–184

    Article  Google Scholar 

  • Hastenrath S, Lamb P (1977) Some aspects of circulation and climate over the eastern equatorial Atlantic. Mon Weather Rev 105:1019–1023

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) The life cycle of the Madden–Julian oscillation. J Atmos Sci 51(15):2225–2237

    Article  Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hsu H-H, Lin S-H (1992) Global teleconnections in the 250-mb streamfunction field during the Northern Hemisphere winter. Mon Weather Rev 120:1169–1190

    Article  Google Scholar 

  • Janicot S, Sultan B (2001) Intra-seasonal modulation of convection in the West African monsoon. Geophys Res Lett 28(3):523–526

    Article  Google Scholar 

  • Janowiak JE, Arkin PA, Morrisey M (1994) An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon Weather Rev 122:2296–2311

    Article  Google Scholar 

  • Ji X, Neelin JD, Lee S-K, Mechoso CR (2014) Interhemispheric teleconnections from tropical heat sources in intermediate and simple models. J Clim 27:684–697

    Article  Google Scholar 

  • Jones C (2009) A homogeneous stochastic model of the Madden–Julian oscillation. J Clim 22:3270–3288

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2002) Active and break phases in the South American monsoon system. J Clim 15:905–914

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2011) Stochastic simulations of the Madden–Julian oscillation activity. Clim Dyn 36:229–246

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2012) Spatial-intensity variations in extreme precipitation in the contiguous United States and the Madden–Julian oscillation. J Clim 25:4898–4913

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2014) Sensitivity to Madden–Julian oscillation variations on heavy precipitation over the contiguous United States. Atmos Res 147–148:10–26

    Article  Google Scholar 

  • Jones C, Schemm J-KE (2000) The influence of intraseasonal variations on medium-to extended-range weather forecasts over South America. Mon Weather Rev 128:486–494

    Article  Google Scholar 

  • Kiladis GN, Weickmann KM (1992) Extratropical forcing of tropical Pacific convection during northern winter. Mon Weather Rev 120:1924–1938

    Article  Google Scholar 

  • Knutson TR, Weickmann KM (1987) 30–60 Day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon Weather Rev 115:1407–1436

    Article  Google Scholar 

  • Lau WK-M, Waliser DE (2012) Intraseasonal variability in the atmosphere–ocean climate system. Springer, New York

    Book  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277

    Google Scholar 

  • Liebmann B, Kiladis GN, Marengo JA, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observation of the 40–50 day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (1998) Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J Clim 11:2387–2403

    Article  Google Scholar 

  • Maloney ED, Shaman J (2008) Intraseasonal variability of the West African monsoon and Atlantic ITCZ. J Clim 21:2898–2918

    Article  Google Scholar 

  • Mathon V, Diedhiou A, Laurent H (2002) Relationship between easterly waves and mesoscale convective systems over the Sahel. Geophys Res Lett. doi:10.1029/2001GL014371

    Google Scholar 

  • Matthews AJ (2000) Propagation mechanisms for the Madden–Julian oscillation. Q J R Meteorol Soc 126(569):2637–2651

    Article  Google Scholar 

  • Melo ABC, Cavalcanti IFA, Souza PP (2009) Zona de Convergência Intertropical do Atlântico. In: Cavalcanti IFA, Ferreira NJ, Justi da Silva MGA, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 25–41

    Google Scholar 

  • Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–901

    Article  Google Scholar 

  • Mo KC, Higgins RW (1998) The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon Weather Rev 126:1581–1596

    Article  Google Scholar 

  • Mounier F, Janicot S, Kiladis GN (2008) The West African monsoon dynamics. Part III: the quasi-biweekly zonal dipole. J Clim 21:1911–1928

    Article  Google Scholar 

  • Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: observation, theory, and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675

    Article  Google Scholar 

  • Ninomiya K (2007) Similarity and difference between the South Atlantic convergence zone and the Baiu frontal zone simulated by an AGCM. J Meteorol Soc Jpn 85(3):277–299

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Nogués-Paegle J, Byerle LK, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128:837–850

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Quadro MFL, Silva Dias MAF, Herdies DL, De Gonçalves LGG (2012) Análise Climatológica da Precipitação e do Transporte de Umidade na Região da ZCAS através da Nova Geração de Reanálises. Rev Bras Meteorol 27(2):152–162

    Article  Google Scholar 

  • Reed RJ, Norquist DC, Recker EE (1977) The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon Weather Rev 105:317–333

    Article  Google Scholar 

  • Rodrigues RR, Haarsma RJ, Campos EJD, Ambrizzi T (2011) The impacts of inter-El Niño variability on the Tropical Atlantic and Northeast Brazil climate. J Clim 24:3402–3422

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057

    Article  Google Scholar 

  • Silva VBS, Kousky V, Higgins W (2011) Daily precipitation statistics for South America: an intercomparison between NCEP reanalyses and observations. J Hydrometeorol 12:101–117

    Article  Google Scholar 

  • Souza P, Cavalcanti IFA (2009) Atmospheric centres of action associated with the Atlantic ITCZ position. Int J Climatol 29:2091–2195

    Article  Google Scholar 

  • Spiegel MR (1972) Schaum’s outline of theory and problems of statistics. McGraw-Hill, São Paulo

    Google Scholar 

  • Sultan B, Janicot S (2000) Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys Res Lett 27(20):3353–3356

    Article  Google Scholar 

  • Sultan B, Janicot S (2003) The West African monsoon dynamics. Part II: the “Preonset’’ and ‘‘Onset’’ of the summer monsoon. J Clim 16:3407–3427

    Article  Google Scholar 

  • Sultan B, Janicot S, Diedhiou A (2003) The West African monsoon dynamics. Part I: documentation of intraseasonal variability. J Clim 16(21):3389–3406

    Article  Google Scholar 

  • Thompson RM Jr, Payne SW, Recker EE, Reed RJ (1979) Structure and properties of synoptic-scale wave disturbances in the tropical convergence zone of the Eastern Atlantic. J Atmos Sci 36:53–72

    Article  Google Scholar 

  • Tomas RA, Webster PJ (1994) Horizontal and vertical structure of cross-equatorial wave propagation. J Atmos Sci 51(11):1417–1430

    Article  Google Scholar 

  • Uvo CB, Nobre CA (1989) A Zona de Convergência Intertropical (ZCIT) e a precipitação no norte do Nordeste do Brasil. Parte I: a posição da ZCIT no Atlântico equatorial. Climanálise 4(7):34–40

    Google Scholar 

  • Viltard A, De Felice P (1979) Statistic analysis of wind velocity in an easterly wave over West Africa. Mon Weather Rev 107:1320–1327

    Article  Google Scholar 

  • Viltard A, De Felice P, Oubuih J (1997) Comparison of the African and the 6–9 day wave-like disturbance patterns over West-Africa and the tropical Atlantic during summer 1985. Meteorol Atmos Phys 62:91–99

    Article  Google Scholar 

  • Wagner RG (1996) Decadal-scale trends in mechanisms controlling meridional sea surface temperature gradients in the tropical Atlantic. J Geophys Res 16:683–694

    Google Scholar 

  • Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6:2162–2174

    Article  Google Scholar 

  • Waliser DE, Somerville RCJ (1994) Preferred latitudes of the intertropical convergence zone. J Atmos Sci 51(12):1619–1639

    Article  Google Scholar 

  • Wallace JM, Gutzler TS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang H, Fu R (2007) The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J Clim 20:1188–1201

    Article  Google Scholar 

  • Webster PJ, Holton JR (1982) Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J Atmos Sci 39:722–733

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, Burlington

    Google Scholar 

  • Xie S-P, Philander GR (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46(4):340–350

    Article  Google Scholar 

  • Yang G-Y, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

    Google Scholar 

  • Zhou J, Lau K-M (2001) Principal modes of interannual and decadal variability of summer rainfall over South America. Int J Climatol 21:1623–1644

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Charles Jones and Dr. Brant Liebmann for the fruitful discussions and Dr. Jones for providing the MJO index used in this study. A.C.N. Tomaziello thanks the support of Fundaçao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (process 2010/17224-0) and Coordenaçao de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES). L.M.V. Carvalho thanks the support of National Oceanic and Atmospheric Administration (grant NA10OAR4310170) and National Science Foundation (Grant AGS-1053294). The CFSR data were developed by NOAA’s National Centers for Environmental Prediction (NCEP) and provided by National Center for Atmospheric Research (NCAR) and OLR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site at http://www.cdc.noaa.gov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Nóbile Tomaziello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaziello, A.C.N., Carvalho, L.M.V. & Gandu, A.W. Intraseasonal variability of the Atlantic Intertropical Convergence Zone during austral summer and winter. Clim Dyn 47, 1717–1733 (2016). https://doi.org/10.1007/s00382-015-2929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2929-y

Keywords

Navigation