Skip to main content
Log in

A skeleton model for the MJO with refined vertical structure

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Madden–Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on intraseasonal timescales and planetary spatial scales. The skeleton model is a minimal dynamical model that recovers robustly the most fundamental MJO features of (I) a slow eastward speed of roughly \(5\, {\mathrm{ms}}^{-1}\), (II) a peculiar dispersion relation with \(d\omega /dk \approx 0\), and (III) a horizontal quadrupole vortex structure. This model depicts the MJO as a neutrally-stable atmospheric wave that involves a simple multiscale interaction between planetary dry dynamics, planetary lower-tropospheric moisture and the planetary envelope of synoptic-scale activity. Here we propose and analyse an extended version of the skeleton model with additional variables accounting for the refined vertical structure of the MJO in nature. The present model reproduces qualitatively the front-to-rear vertical structure of the MJO found in nature, with MJO events marked by a planetary envelope of convective activity transitioning from the congestus to the deep to the stratiform type, in addition to a front-to-rear structure of moisture, winds and temperature. Despite its increased complexity the present model retains several interesting features of the original skeleton model such as a conserved energy and similar linear solutions. We further analyze a model version with a simple stochastic parametrization for the unresolved details of synoptic-scale activity. The stochastic model solutions show intermittent initiation, propagation and shut down of MJO wave trains, as in previous studies, in addition to MJO events with a front-to-rear vertical structure of varying intensity and characteristics from one event to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ajayamohan S, Khouider B, Majda AJ (2013) Realistic initiation and dynamics of the Madden–Julian oscillation in a coarse resolution aquaplanet GCM. Geophys Res Lett 40:6252–6257

    Article  Google Scholar 

  • Benedict J, Randall D (2007) Observed characteristics of the MJO relative to maximum rainfall. J Atmos Sci 64:2332–2354

    Article  Google Scholar 

  • Biello JA, Majda AJ (2005) A new multiscale model for the Madden–Julian oscillation. J Atmos Sci 62(6):1694–1721

    Article  Google Scholar 

  • Biello JA, Majda AJ (2006) Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn Atmos Oceans 42(1–4):152–215

    Article  Google Scholar 

  • Deng Q, Khouider B, Majda AJ (2014) The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. J Atmos Sci 72:55–74

    Article  Google Scholar 

  • Frenkel Y, Majda AJ, Khouider B (2012) Using the stochastic multicloud model to improve tropical convective parameterization: a paradigm example. J Atmos Sci 69:1080–1105

    Article  Google Scholar 

  • Gardiner CW (1994) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, Berlin

    Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) The life cycle of the Madden–Julian oscillation. J Atmos Sci 51:2225–2237

    Article  Google Scholar 

  • Khouider B, Biello JA, Majda AJ (2010) A stochastic multicloud model for tropical convection. Commun Math Sci 8(1):187–216

    Article  Google Scholar 

  • Khouider B, Majda AJ (2006) A simple multicloud parametrization for convectively coupled tropical waves. Part I: linear analysis. J Atmos Sci 63:1308–1323

    Article  Google Scholar 

  • Khouider B, Majda AJ (2007) A simple multicloud parametrization for convectively coupled tropical waves. Part II nonlinear simulations. J Atmos Sci 64:381–400

    Article  Google Scholar 

  • Khouider B, Majda AJ (2008) Multicloud models for organized tropical convection: enhanced congestus heating. J Atmos Sci 65(3):895–914

    Article  Google Scholar 

  • Khouider B, St-Cyr A, Majda AJ, Tribbia J (2011) The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J Atmos Sci 68(2):240–264

    Article  Google Scholar 

  • Kikuchi K, Takayabu YN (2004) The development of organized convection associated with the MJO during TOGA COARE IOP: trimodal characteristics. Geophys Res Lett 31:L10101. doi:10.1029/2004GL019601

    Article  Google Scholar 

  • Kiladis GN, Straub KH, T HP (2005) Zonal and vertical structure of the Madden–Julian oscillation. J Atmos Sci 62:2790–2809

    Article  Google Scholar 

  • Lawler G F (2006) Introduction to stochastic processes. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Madden RE, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RE, Julian PR (1994) Observations of the 40–50 day tropical oscillation-a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Majda AJ, Biello JA (2004) A multiscale model for tropical intraseasonal oscillations. Proc Natl Acad Sci USA 101:4736–4741

    Article  Google Scholar 

  • Majda AJ, Stechmann SN (2009a) A simple dynamical model with features of convective momentum transport. J Atmos Sci 66:373–392

    Article  Google Scholar 

  • Majda AJ, Stechmann SN (2009b) The skeleton of tropical intraseasonal oscillations. Proc Natl Acad Sci 106:8417–8422

    Article  Google Scholar 

  • Majda AJ, Stechmann SN (2011) Nonlinear dynamics and regional variations in the MJO skeleton. J Atmos Sci 68:3053–3071

    Article  Google Scholar 

  • Majda AJ, Stechmann SN, Khouider B (2007) Madden-Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc Natl Acad Sci USA 104:9919–9924

    Article  Google Scholar 

  • Mapes B, Tulich S, Lin J, Zuidema P (2006) The mesoscale convection life cycle: building block or prototype for large-scale tropical waves? Dyn Atmos Oceans 42:3–29

    Article  Google Scholar 

  • Matthews AJ (2008) Primary and successive events in the Madden–Julian oscillation. Q J R Meteorol Soc 134:439–453

    Article  Google Scholar 

  • Moncrieff M (2004) Analytic representation of the large-scale organization of tropical convection. Q J R Meteorol Soc 130:1521–1538

    Google Scholar 

  • Moncrieff MW, Shapiro M, Slingo J, Molteni F (2007) Collaborative research at the intersection of weather and climate. WMO Bull 56:204–211

    Google Scholar 

  • Ogrosky HR, Stechmann SN (2015) The mjo skeleton model with observation-based background state and forcing. Q J R Meteorol Soc. doi:10.1002/qj.2552

  • Stachnik JP, Waliser DE, Majda A (2015) Precursor environmental conditions associated with the termination of madden-julian oscillation events. J Atmos Sci. doi:10.1175/JAS-D-14-0254.1

  • Stechmann S, Majda AJ, Skjorshammer D (2013) Convectively coupled wave-environment interactions. Theor Comput Fluid Dyn 27:513–532

    Article  Google Scholar 

  • Stechmann SN, Majda AJ (2015) Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon Weather Rev 143:395–416

    Article  Google Scholar 

  • Stechmann SN, Majda AJ, Boulaem K (2008) Nonlinear dynamics of hydrostatic internal gravity waves. Theor Comput Fluid Dyn 22:407–432

    Article  Google Scholar 

  • Thual S, Majda AJ, Stechmann SN (2014) A stochastic skeleton model for the MJO. J Atmos Sci 71:697–715

    Article  Google Scholar 

  • Thual S, Majda A-J, Stechmann SN (2015) Asymmetric intraseasonal events in the skeleton MJO model with seasonal cycle. Dyn Clim doi:10.1007/s00382-014-2256-8

  • Tian B, Waliser D, Fetzer E, Lambrigsten B, Yung Y, Wang B (2006) Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J Atmos Sci 63:2462–2485

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively Coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Wheeler MC, Kiladis George N, Webster PJ (2000) Large-scale dynamical fields associated with convectively coupled equatorial waves. J Atmos Sci 57:613–640

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43. RG2003, doi:10.1029/2004RG000158

  • Zhu H, Hendon H, Jacob C (2009) Convection in a parameterized and super-parameterized model and its role in the representation of the MJO. J Atmos Sci 66:2796–2811

    Article  Google Scholar 

Download references

Acknowledgments

The research of A. J. M. is partially supported by the Office of Naval Research Grant ONR MURI N00014-12-1-0912. S. T. is supported as a postdoctoral fellow through A. J. M’s ONR MURI Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulian Thual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thual, S., Majda, A.J. A skeleton model for the MJO with refined vertical structure. Clim Dyn 46, 2773–2786 (2016). https://doi.org/10.1007/s00382-015-2731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2731-x

Keywords

Navigation