Skip to main content

Advertisement

Log in

Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We examine the climatic responses to the shortwave (SW) and longwave (LW) direct radiative effects (RE) of sea salt aerosol in present day and the last glacial maximum (LGM) using a general circulation model with online simulation of sea salt cycle. The 30-year control simulation predicts a present-day annual emission of sea salt of 4,253 Tg and a global burden of 8.1 Tg for the particles with dry radii smaller than 10 μm. Predicted annual and global mean SW and LW REs of sea salt are, respectively, −1.06 and +0.14 W m−2 at the top of atmosphere (TOA), and −1.10 and +0.54 W m−2 at the surface. The LW warming of sea salt is found to decrease with altitude, which leads to a stronger net sea salt cooling in the upper troposphere. The changes in global mean air temperature by the present-day sea salt are simulated to be −0.55, −0.63, −0.86, and −0.91°K at the surface, 850, 500a, and 200 hPa, respectively. The emission of sea salt at the LGM is estimated to be 4,075 Tg year−1. Relative to present day, the LGM sea salt emission is higher by about 18% over the tropical and subtropical oceans, and is lower by about 35% in the mid- and high-latitudes in both hemispheres because of the expansion of sea ice. As a result of the weakened LGM water cycle, the LGM annual and global mean burden of sea salt is predicted to be higher by 4% as compared to the present-day value. Compared with the climatic effect of sea salt in present day, the sea-salt-induced reductions in surface air temperature at the LGM have similar magnitude in the tropics but are weakened by about 0.18 and 0.14°K in the high latitudes of the Southern and Northern Hemispheres, respectively. We also perform a sensitivity study to explore the upper limit of the climatic effect of the LGM sea salt. We assume an across-the-board 30% increase in the glacial wind speed and consider sea salt emissions over sea ice, so that the model can reproduce the ratio of sea salt deposition between the LGM and present day in the high latitudes of the Southern Hemisphere as suggested by the ice core records. This sensitivity run predicts a global emission of sea salt of 11,941 Tg year−1 with a global burden of 20.9 Tg. With such a high loading, sea salt aerosol at the LGM can have a net RE of −2.28 W m−2 at the TOA and lead to an annual and global mean cooling of 1.27°K at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander B, Savarino J, Lee CCW, Park RJ, Jacob DJ, Li Q, Thiemens MH, Yantosca RM (2005) Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J Geophys Res 110 (D10307). doi:10.1029/2004JD005659

  • Anguelova MD, Webster F (2006) Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps. J Geophys Res 111 (C3):C03017. doi:10.1029/2005JC003158

  • Ayash T, Gong S, Jia CQ (2008) Direct and indirect shortwave radiative effects of sea salt aerosols. J Clim 21 (13):3207-3220. doi:10.1175/2007JCLI2063.1

    Google Scholar 

  • Bellouin N, Rae JGL, Jones A, Johnson CE, Haywood JM, Boucher O (2011) Aerosol forcing in the CMIP5 simulations by Hadgem2-ES and the role of ammonium nitrate. J Geophys Res. doi:10.1029/2011JD016074 (in press)

  • Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Article  Google Scholar 

  • Bigler M, Rothlisberger R, Lambert F, Stocker TF, Wagenbach D (2006) Aerosol deposited in East Antarctica over the last glacial cycle: detailed apportionment of continental and sea-salt contributions. J Geophys Res 111 (D08205). doi:10.1029/2005JD006469

  • Blanchard DC (1985) The oceanic production of atmospheric sea salt. J Geophys Res 90(Nc1):961–963

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Article  Google Scholar 

  • Briegleb BP (1992) Delta-Eddington approximation for solar radiation in the NCAR community climate model. J Geophys Res 97(D7):7603–7612

    Article  Google Scholar 

  • Carlson TN, Benjamin SG (1980) Radiative heating rates for saharan dust. J Atmos Sci 37(1):193–213

    Article  Google Scholar 

  • Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the earth system. Atmos Chem Phys 10:1701–1737. doi:10.5194/acp-10-1701-2010

    Article  Google Scholar 

  • Chin M, Ginoux P, Kinne S, Torres O, Holben BN, Duncan BN, Martin RV, Logan JA, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J Atmos Sci 59(3):461–483

    Article  Google Scholar 

  • Christopher SA, Zhang JL (2002) Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans. Geophys Res Lett 29(18):1859. doi:10.1029/2002GL014803

    Article  Google Scholar 

  • CLIMAP project members (1981). Seasonal reconstructions of the earth’s surface at the last glacial maximum, Geological Society of America Map and Chart Series MC-36

  • de Rooij WA, van der Stap CCAH (1984) Expansion of Mie scattering matrices in generalized spherical functions. Astron Astrophys 131:237–248

    Google Scholar 

  • DeAngelis M, Steffensen JP, Legrand M, Clausen H, Hammer C (1997) Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: comparison with east Antarctic records. J Geophys Res 102(C12):26681–26698

    Article  Google Scholar 

  • Dobbie S, Li JN, Harvey R, Chylek P (2003) Sea-salt optical properties and GCM forcing at solar wavelengths. Atmos Res 65(3–4):211–233

    Article  Google Scholar 

  • Easter RC, Ghan SJ, Zhang Y, Saylor RD, Chapman EG, Laulainen NS, Abdul-Razzak H, Leung LR, Bian X, Zaveri RA (2004) MIRAGE: model description and evaluation of aerosols and trace gases. J Geophys Res 109(D20):1–46. doi:10.1029/2004JD004571

    Article  Google Scholar 

  • Erickson DJ, Merrill JT, Duce RA (1986) Seasonal estimates of global atmospheric sea-salt distributions. J Geophys Res 91(D1):1067–1072

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY pp 131–217

  • Galloway JN, Savoie DL, Keene WC, Prospero JM (1993) The temporal and spatial variability of scavening ratios for nss sulfate, nitrate, methanesulfonate and sodium in the atmosphere over the North Atlantic Ocean. Atmos Environ 27A(2):235–250

    Google Scholar 

  • Gerber HE (1985) Relative humidity parameterization of the navy aerosol model (NAM). Navy Research Lab, Washington DC

    Google Scholar 

  • Ginoux P, Horowitz LW, Ramaswamy V, Geogdzhayev IV, Holben BN, Stenchikov G, Tie X (2006) Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. J Geophys Res 111(D22):D22210. doi:10.1029/2005JD006707

    Article  Google Scholar 

  • Gong SL (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem Cycles 17(4):1097. doi:10.1029/2003GB002079

    Article  Google Scholar 

  • Gong SL, Barrie LA, Prospero JM, Savoie DL, Ayers GP, Blanchet JP, Spacek L (1997) Modeling sea-salt aerosols in the atmosphere. 2. Atmospheric concentrations and fluxes. J Geophys Res 102(D3):3819–3830

    Article  Google Scholar 

  • Grini A, Myhre G, Sundet JK, Isaksen ISA (2002) Modeling the annual cycle of sea salt in the global 3D model Oslo CTM2: concentrations, fluxes, and radiative impact. J Clim 15(13):1717–1730

    Article  Google Scholar 

  • Guelle W, Schulz M, Balkanski Y, Dentener F (2001) Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. J Geophys Res 106(D21):27509–27524

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: climate processes and climate sensitivity. Geophysical monograph 29. AGU, Washington, DC, pp 130–163

    Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cycles 10(4):693–709

    Article  Google Scholar 

  • Haywood JM, Ramaswamy V, Soden BJ (1999) Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science 283(5406):1299–1303. doi:10.1126/science.283.5406.1299

    Article  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc 79(5):831–844

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16

    Article  Google Scholar 

  • Irshad R, Grainger RG, Peters DM, McPheat RA, Smith KM, Thomas G (2009) Laboratory measurements of the optical properties of sea salt aerosol. Atmos Chem Phys 9(1):221–230

    Article  Google Scholar 

  • Jacobson MZ (2001) Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J Geophys Res 106(D2):1551–1568

    Article  Google Scholar 

  • Jaegle L, Quinn PK, Bates TS, Alexander B, Lin J-T (2011) Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos Chem Phys 11:3137–3157. doi:10.5194/acp-11-3137-2011

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang De (2007) Palaeoclimate. In: Jouzel J, Mitchell J (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY, pp 433–497

  • Jiang D (2008) Vegetation and soil feedbacks at the last glacial maximum. Palaeogeogr Palaeoclimatol Palaeoecol 268:39–46

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77(3):437–471

    Article  Google Scholar 

  • Kaufman YJIK, Remer LA, Rosenfeld D, Rudich Y (2005) The effect of smoke, dust and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad Sci 102(32):11207–11212. doi:10.1073/pnas.0505191102

    Article  Google Scholar 

  • Kiehl JT, Briegleb BP (1991) A new parameterization of the absorptance due to the 15 μm band system of carbon dioxide. J Geophys Res 96(D5):9013–9019

    Article  Google Scholar 

  • Koch D, Schmidt GA, Field CV (2006) Sulfur, sea salt, and radionuclide aerosols in GISS ModelE. J Geophys Res 111(D6):D06206. doi:10.1029/2004JD005550

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    Article  Google Scholar 

  • Li J, Ma X, von Salzen K, Dobbie S (2008) Parameterization of sea-salt optical properties and physics of the associated radiative forcing. Atmos Chem Phys 8(16):4787–4798

    Article  Google Scholar 

  • Liang X (1996) Description of a nine-level grid point atmospheric general circulation model. Adv Atmos Sci 13(3):269–298

    Article  Google Scholar 

  • Liao H, Seinfeld JH, Adams PJ, Mickley LJ (2004) Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J Geophys Res 109:D16207. doi:10.1029/2003JD004456

    Article  Google Scholar 

  • Liao H, Henze DK, Seinfeld JH, Wu SL, Mickley LJ (2007) Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J Geophys Res 112(D6):D06201. doi:10.1029/2006JD007813

    Article  Google Scholar 

  • Loeb NG, Manalo-Smith N (2005) Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J Clim 18(17):3506–3526. doi:10.1175/JCLI3504.1

    Article  Google Scholar 

  • Lubin D, Satheesh SK, McFarquar G, Heymsfield AJ (2002) Longwave radiative forcing of Indian Ocean tropospheric aerosol. J Geophys Res 107(D19):8004. doi:10.1029/2001JD001183

    Article  Google Scholar 

  • Ma X, von Salzen K, Li J (2008) Modelling sea salt aerosol and its direct and indirect effects on climate. Atmos Chem Phys 8(5):1311–1327

    Article  Google Scholar 

  • Mahowald NM, Lamarque JF, Tie XX, Wolff E (2006a) Sea-salt aerosol response to climate change: last glacial maximum, preindustrial, and doubled carbon dioxide climates. J Geophys Res 111(D5):D05303. doi:10.1029/2005JD006459

    Article  Google Scholar 

  • Mahowald NM, Yoshioka M, Collins WD, Conley AJ, Fillmore DW, Coleman DB (2006b) Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys Res Lett 33(20):L20705. doi:10.1029/2006GL026126

    Article  Google Scholar 

  • Manabe S, Broccoli AJ (1985) The Influence of continental ice sheets on the climate of an ice age. J Geophys Res 90(D1):2167–2190

    Article  Google Scholar 

  • Mishchenko MI, Dlugach JM, Yanovitskij EG, Zakharova NT (1999) Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. J Quant Spectrosc Radiat Transf 63:409–432

    Article  Google Scholar 

  • Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan EC, Niocaill GM (eds) Oceanic whitecaps and their role in air-sea exchange processes. Kluwer Academic, Dordrecht, pp 167–174

    Google Scholar 

  • Mulcahy JP, O’Dowd CD, Jennings SG, Ceburnis D (2008) Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys Res Lett 35(16):L16810. doi:10.1029/2008GL034303

    Article  Google Scholar 

  • Myhre G, Bellouin N, Berglen T, Berntsen T, Boucher O, Grini A, Isaksen I, Johnsrud M, Mishchenko M, Stordal F, Tanré D (2007) Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus 59B:115–129. doi:10.1111/j.1600-0889.2006.00226.x

    Google Scholar 

  • Myhre G, Berglen TF, Johnsrud M, Hoyle CR, Berntsen TK, Christopher SA, Fahey DW, Isaksen ISA, Jones TA, Kahn RA, Loeb N, Quinn P, Remer L, Schwarz JP, Yttri KE (2009) Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos Chem Phys 9:1365–1392. doi:10.5194/acp-9-1365-2009

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: The ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Petit JR, Briat M, Royer A (1981) Ice-age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293(5831):391–394. doi:10.1038/293391a0

    Article  Google Scholar 

  • Petit JR, Mounier L, Jouzel J, Korotkevich YS, Kotlyakov VI, Lorius C (1990) Palaeoclimatological and chronological implications of the Vostok core dust record. Nature 343(6253):56–58

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436. doi:10.1038/20859

    Article  Google Scholar 

  • Prospero JM (1996) The atmospheric transport of particles to the Ocean. In: Ittekkot V, Schäfer P, Honjo S, Depetris PJ (eds) Particle flux in the ocean, SCOPE, vol 57. Wiley, Chichester, pp 19–52

    Google Scholar 

  • Rankin AM, Wolff EW, Martin S (2002) Frost flowers: implications for tropospheric chemistry and ice core interpretation. J Geophys Res 107(D23):4683. doi:10.1029/2002JD002492

    Article  Google Scholar 

  • Reader MC, McFarlane N (2003) Sea-salt aerosol distribution during the last glacial maximum and its implications for mineral dust. J Geophys Res 108(D8):4253. doi:10.1029/2002JD002063

    Article  Google Scholar 

  • Reddy MS, Boucher O, Balkanski Y, Schulz M (2005a) Aerosol optical depths and direct radiative perturbations by species and source type. Geophys Res Lett 32(12):L12803. doi:10.1029/2004GL021743

    Article  Google Scholar 

  • Reddy MS, Boucher O, Bellouin N, Schulz M, Balkanski M, Dufresne Y, Pham M (2005b) Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Meteorologie Dynamique general circulation model. Geophys Res Lett 110(D10):D10S16. doi:10.1029/2004JD004757

    Google Scholar 

  • Remer LA, Kaufman YJ (2006) Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. Atmos Chem Phys 6:237–253. doi:10.5194/acp-6-237-2006

    Article  Google Scholar 

  • Rothlisberger R, Mulvaney R, Wolff EW, Hutterli MA, Bigler M, Sommer S, Jouzel J (2002) Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophys Res Lett 29(20):1963. doi:10.1029/2002gl015186

    Article  Google Scholar 

  • Satheesh SK, Lubin D (2003) Short wave versus long wave radiative forcing by Indian Ocean aerosols: role of sea-surface winds. Geophys Res Lett 30(13):1695. doi:10.1029/2003GL017499

    Article  Google Scholar 

  • Smith MH, Park PM, Consterdine IE (1993) Marine aerosol concentration and estimated fluxes over sea. Quart J Roy Meteor Soc 119:809–824

    Article  Google Scholar 

  • Takemura T, Okamoto H, Maruyama Y, Numaguti A, Higurashi A, Nakajima T (2000) Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J Geophys Res 105(D14):17853–17873

    Article  Google Scholar 

  • Takemura T, Nakajima T, Dubovik O, Holben BN, Kinne S (2002) Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J Clim 15(4):333–352

    Article  Google Scholar 

  • Tang IN, Tridico AC, Fung KH (1997) Thermodynamic and optical properties of sea salt aerosols. J Geophys Res 102(D19):23269–23275

    Article  Google Scholar 

  • Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res 102(D20):23895–23916

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813

    Article  Google Scholar 

  • Tie XX, Madronich S, Walters S, Edwards DP, Ginoux P, Mahowald N, Zhang RY, Lou C, Brasseur G (2005) Assessment of the global impact of aerosols on tropospheric oxidants. J Geophys Res 110(D3):D03204. doi:10.1029/2004JD005359

    Article  Google Scholar 

  • Wagenbach D, Ducroz F, Mulvaney R, Keck L, Minikin A, Legrand M, Hall JS, Wolff EW (1998) Sea-salt aerosol in coastal Antarctic regions. J Geophys Res 103(D9):10961–10974

    Article  Google Scholar 

  • Woodward S (2001) Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J Geophys Res 106(D16):18155–18166

    Article  Google Scholar 

  • Yu H, Dickinson RE, Chin M, Kaufman YJ, Zhou M, Zhou L, Tian Y, Dubovik O, Holben BN (2004) Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations. J Geophys Res 109 (D03206). doi:10.1029/2003JD003914

  • Yue X, Wang HJ (2009) The application of the CCM3/NCAR radiation scheme in IAP-AGCM. Chin J Atmos Sci 33(1):16–28

    Google Scholar 

  • Yue X, Wang HJ, Wang Z, Fan K (2009) Simulation of dust aerosol radiative feedback using the global transport model of dust: 1. Dust cycle and validation. J Geophys Res 114:D10202. doi:10.1029/2008JD010995

    Article  Google Scholar 

  • Yue X, Wang HJ, Liao H, Fan K (2010) Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. J Geophys Res 115:D04201. doi:10.1029/2009JD012063

    Article  Google Scholar 

  • Yue X, Wang HJ, Liao H, Jiang DB (2011) Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J Clim 24(3):843–858. doi:10.1175/2010JCLI3827.1

    Article  Google Scholar 

  • Zeng Q, Zhang X, Liang X, Yuan C, Chen SF (1989) Documentation of IAP two-level atmospheric general circulation model. DOE/ER/60314-H1, CDIAC TR044. Dept. of Energy, Washington, DC

    Google Scholar 

  • Zhang X (1990) Dynamical framework of IAP nine-level atmospheric general circulation model. Adv Atmos Sci 7(1):67–77

    Article  Google Scholar 

  • Zhao TX-P, Yu H, Laszlob I, Chinc M, Conant WC (2008) Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans. J Quant Spectrosc Radiat Transf 109:1162–1186. doi:10.1016/j.jqsrt.2007.10.006

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. M. Prospero and D. L. Savoie for their generous offer of the observed sea salt concentrations from the University of Miami Ocean Aerosol Network. We also acknowledge the two anonymous reviewers for their helpful comments. This work was supported by the CAS Strategic Priority Research Program Grant No. XDA05100503, the National Natural Science Foundation of China under grants 40825016 and 90711004, the special funding in atmospheric science GYHY20086006, and the National Basic Research Program of China (‘‘973’’ program) under grant 2010CB951901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, X., Liao, H. Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum. Clim Dyn 39, 3019–3040 (2012). https://doi.org/10.1007/s00382-012-1312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1312-5

Keywords

Navigation