Skip to main content

Advertisement

Log in

An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Current ocean reanalysis systems contain considerable uncertainty in estimating the subsurface oceanic state, especially in the tropical Atlantic Ocean. Given this level of uncertainty, it is important to develop useful strategies to identify realistic low-frequency signals optimally from these analyses. In this paper, we present an “ensemble” method to estimate the variability of upper-ocean heat content (HC) in the tropical Atlantic based on multiple-ocean reanalysis products. Six state-of-the-art global ocean reanalaysis products, all of which are widely used in the climate research community, are examined in terms of their HC variability from 1979 to 2007. The conventional empirical orthogonal function (EOF) analysis of the HC anomalies from each individual analysis indicates that their leading modes show significant qualitative differences among analyses, especially for the first modes, although some common characteristics are discernable. Then, the simple arithmetic average (or ensemble mean) is applied to produce an ensemble dataset, i.e., the EM analysis. The leading EOF modes of the EM analysis show quantitatively consistent spatial–temporal patterns with those derived from an alternative EOF technique that maximizes signal-to-noise ratio of the six analyses, which suggests that the ensemble mean generates HC fields with the noise reduced to an acceptable level. The quality of the EM analysis is further validated against AVISO altimetry sea level anomaly (SLA) data and PIRATA mooring station data. A regression analysis with the AVISO SLA data proved that the leading modes in the EM analysis are realistic. It also demonstrated that some reanalysis products might contain higher level of intrinsic noise than others. A quantitative correlation analysis indicates that the HC fields are more realistic in the EM analysis than in individual products, especially over the equatorial regions, with signals contributed from all ensemble members. A direct comparison with the HC anomalies derived from in situ temperature measurements showed that the EM analysis generally gets realistic HC variability at the five chosen PIRATA mooring stations. Overall, these results demonstrate that the EM analysis is a promising alternative for studying physical processes and possibly for initializing climate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen MR, Smith LA (1997) Optimal filtering in singular spectrum analysis. Phys Lett 234:419–428

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K (2010) Evaluation of the ERA-INTERIM forcing fluxes from an ocean perspective. ECMWF ERA report series no. 6. http://www.ecmwf.int/publications/library/do/references/list/782009

  • Balmaseda MA, Weaver A (2006) Temperature, salinity, and sea level: climate variability from ocean reanalyses. Paper presented at the CLIVAR/GODAE meeting on ocean synthesis evaluation, August 31–September 1, 2006, ECMWF, Reading, UK. Meeting presentation available at: http://www.clivar.org/organization/gsop/synthesis/groups/Items3_4.ppt. Accessed 26 May 2009

  • Balmaseda M, Vidard A, Anderson D (2008) The ECMWF system 3 ocean analysis system. Mon Wea Rev 136:3018–3034

    Article  Google Scholar 

  • Balmaseda M, Mogensen K, Molteni F, Weaver A (2010) The NEMOVAR-COMBINE ocean re-analysis. COMBINE technical report no. 1. http://www.combine-project.eu/Technical-Reports.1668.0.html

  • Behringer DW (2005) The global ocean data assimilation system (GODAS) at NCEP, 11th symposium on integrated observing and assimilation systems for the atmosphere, oceans, and land surface (IOAS-AOLS), San Antonio, TX. Amer Meteor Soc, vol 3.3

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev 146:2999–3017

    Article  Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 4:888–903

    Article  Google Scholar 

  • Carton JA, Santorelli A (2009) Global decadal upper-ocean heat content as viewed in nine analyses. J Clim 21:6015–6035

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chang P, Ji L, Li H, Penland C, Matrasova L (1998) Prediction of tropical Atlantic sea surface temperature. Geophys Res Lett 25:1193–1196

    Google Scholar 

  • Chang P, Saravanan R, Ji L, Hegerl GC (2000) The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J Clim 13:2195–2216

    Article  Google Scholar 

  • Chao Y, Philander SGH (1993) On the structure of the Southern Oscillation. J Clim 6:450–469

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine intertropical convergence zone. Clim Dyn 25:477–496. doi:10.1007/s00382-005-0040-5

    Article  Google Scholar 

  • Corre L, Terray L, Balmaseda M, Ribes A, Weaver A (2010) Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? Clim Dyn. doi:10.1007/s00382-010-0950-8

  • Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Accepted by Quart J Roy Meteor Soc

  • Dong B-W, Sutton RT (2002) Adjustment of the coupled ocean- atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29(15):1728. doi:10.1029/2002GL015229

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945. doi:10.1029/96JC03296

    Article  Google Scholar 

  • Florenchie P, Reason CJC, Lutjeharms JRE, Rouault M, Roy C, Masson S (2004) Evolution of interannual warm and cold events in the southeast Atlantic Ocean. J Clim 17:2318–2334

    Article  Google Scholar 

  • Folland C, Palmer T, Parker D (1986) Sahel rainfall and worldwide sea surface temperatures. Nature 320:602–606

    Article  Google Scholar 

  • Gemmell AL, Smith GC, Haines K, Blower JD (2009) Validation of ocean model syntheses against hydrography using a new web application. J Op Oceangr 2(2):29–41

    Google Scholar 

  • Ghil M, Malanotte-Rizzoli P (1991) Data assimilation in meteorology and oceanography. Adv Geophys 33:141–266

    Article  Google Scholar 

  • Handoh IC, Bigg GR (2000) A self-sustaining climate mode in the tropical Atlantic, 1995–1997: observations and modelling. Quart J Roy Meteor Soc 126:807–821

    Article  Google Scholar 

  • Hastenrath S, Heller L (1977) Dynamics of climatic hazards in northeast Brazil. Quart J Roy Meteor Soc 103:77–92

    Article  Google Scholar 

  • Hirst AC, Hastenrath S (1983) Atmosphere–ocean mechanisms of climate anomalies in the Angola–Tropical Atlantic sector. J Phys Oceanogr 13:1146–1157

    Article  Google Scholar 

  • Hu Z-Z, Huang B (2007) The predictive skill and the most predictable pattern in the tropical Atlantic: the effect of ENSO. Mon Wea Rev 135:1786–1806

    Article  Google Scholar 

  • Huang B (2004) Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn 23:133–152

    Article  Google Scholar 

  • Huang B, Shukla J (1997) Characteristics of the interannual and decadal variability in a general circulation model of the tropical Atlantic Ocean. J Phys Oceanogr 27:1693–1712

    Article  Google Scholar 

  • Huang B, Shukla J (2005) Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J Clim 18:1652–1672

    Article  Google Scholar 

  • Huang B, Carton JA, Shukla J (1995) A numerical simulation of the variability in the tropical Atlantic Ocean, 1980–1988. J Phys Oceanogr 25:835–854

    Article  Google Scholar 

  • Huang B, Hu Z-Z, Jha B (2007) Evolution of model systematic errors in the tropical Atlantic basin from the NCEP coupled hindcasts. Clim Dyn 28(7/8):661–682. doi:10.1007/s00382-006-0223-8

    Article  Google Scholar 

  • Joyce TM, Frankignoul C, Yang J, Phillips HE (2004) Ocean response and feedback to the SST dipole in the tropical Atlantic. J Phys Oceanogr 34:2525–2540

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Chang P, Robertson AW (2006) The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J Clim 23:5949–5970

    Article  Google Scholar 

  • Lamb PJ (1978) Large-scale tropical Atlantic surface circulation patterns associated with subsaharan weather anomalies. Tellus 30:240–251

    Article  Google Scholar 

  • Le Traon PY, Nadal F, Ducet N (1998) An improved mapping method of multi-satellite altimeter data. J. Atmos Oceanic Technol 25:522–534

    Article  Google Scholar 

  • Lee S-K, Wang C (2008) Tropical Atlantic decadal oscillation and its potential impact on the equatorial atmosphere-ocean dynamics: a simple model study. J Phys Oceanogr 38:193–212

    Article  Google Scholar 

  • Lee T, Awaji T, Balmaseda MA, Grenier E, Stammer D (2009) Ocean state estimation for climate research. Oceanography 22:160–167

    Article  Google Scholar 

  • Lee T et al (2010) Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products. Dyn Atmos Oceans 50:201–223

    Article  Google Scholar 

  • Mahajan S, Saravanan R, Chang P (2011) The role of the wind-evaporation-sea surface temperature (WES) feedback as a thermodynamic pathway for the equator-ward propagation of high latitude sea-ice induced cold anomalies. J Clim (in press). doi:10.1175/2010JCLI3455.1

  • Mogensen K, Balmaseda MA, Weaver AT, Martin M, Vidard A (2009) NEMOVAR: a variational data assimilation system for the NEMO ocean model. ECMWF Newslett 120:17–22

    Google Scholar 

  • Moura AD, Shukla J (1981) On the dynamics of the droughts in northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J Clim 11:483–496

    Article  Google Scholar 

  • Rebert JP, Donguy JR, Eldin G, Wyrtki E (1985) Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J Geophys Res 90:11719–11725

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang WQ (2002) An improved in situ and satellite SST analysis for climate, J. Climate 15(13):1609–1625

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn. 31:587–598

    Article  Google Scholar 

  • Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the tropical At- lantic sector. J Clim 13:3285–3297

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Met Soc 91:1015–1057

    Article  Google Scholar 

  • Servain J (1991) Simple climatic indices for the tropical Atlantic Ocean and some applications. J Geophys Res 96(C8):15137–15146

    Article  Google Scholar 

  • Servain J, Picaut J, Merle J (1982) Evidence of remote forcing in the equatorial Atlantic Ocean. J Phys Oceanogr 12:457–463

    Article  Google Scholar 

  • Servain J, Busalacchi AJ, McPhaden MJ, Moura AD, Reverdin G, Vianna M, Zebiak SE (1998) A pilot research moored array in the tropical atlantic (PIRATA). Bull Am Meteorol Soc 79:2019–2031

    Article  Google Scholar 

  • Servain J, Wainer I, McCreary JP, Dessier A (1999) Relationship between the Equatorial and meridional modes of cli- matic variability in the tropical Atlantic. Geophys Res Lett 26:485–488

    Article  Google Scholar 

  • Stammer et al (2010) Ocean information provided through ensemble ocean syntheses. In Hall J, Harrison DE, Stammer D (eds) Proceedings of “OceanObs’09: sustained ocean observations and information for society” conference, vol 2, Venice, Italy, 21–25 September 2009, ESA Publication WPP-306

  • Stockdale TN, Balmaseda M, Vidard A (2006) Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMs. J Clim 19:6047–6061

    Article  Google Scholar 

  • Sutton RT, Jewson SP, Rowell DP (2000) The elements of climate variability in the tropical Atlantic region. J Clim 13:3261–3284

    Article  Google Scholar 

  • Venzke S, Allen MR, Sutton RT, Rowell DP (1999) The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J Clim 12:2562–2584

    Article  Google Scholar 

  • Wagner RG, da Silver A (1994) Surface conditions associated with anomalous rainfall in the Guinea coastal region. Int J Climatol 14:179–199

    Article  Google Scholar 

  • Wahl S, Latif M, Park W, Keenlyside N (2011) On the tropical atlantic SST warm bias in the Kiel climate model. Clim Dyn 36:891–906

    Article  Google Scholar 

  • Wen C, Chang P, Saravanan R (2009) Effect of atlantic meridional overturning circulation changes on tropical atlantic sea-surface temperature variability: A 2-1/2 layer reduced gravity ocean model study. J Clim. doi:10.1175/2009JCLI3042.1

  • Xie S-P (1999) A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70

    Article  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction. Geophys- ical Monograph, NO. 147, Amer Geophys. Union, Washington DC, pp 121–142

    Chapter  Google Scholar 

  • Xue Y et al (2011a) Comparative analysis of upper ocean heat content variability from ensemble operational ocean analysis. U.S. CLIVAR 9(1):7–10

    Google Scholar 

  • Xue Y, Huang B, Hu Z, Kumar A, Wen C, Behringer D, Nadiga S (2011b) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn. doi:10.1007/s00382-010-0954-4

  • Yang JY (1999) A linkage between decadal climate variations in the Labrador Sea and the tropical Atlantic Ocean. Geophys Res Lett 26:1023–1026

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 8:1567–1586

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Wea Rev 135:3541–3564

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study is provided by the NOAA CVP Program (NA07OAR4310310). The authors would like to thank Drs. J. Shukla and J. Kinter for their guidance and support of this project. We are grateful to two anonymous reviewers for their suggestions and comments. We would also like to thank Dr. V. Krishnamurthy and an anonymous reviewer within COLA for their comments on an earlier version of the manuscript. We thank ECMWF, NCEP, GFDL for providing their ocean data assimilation analysis datasets and Dr. B. Giese for providing the SODA ocean data assimilation analyses. The availability of these datasets makes this analysis possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieshun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Huang, B. & Balmaseda, M.A. An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Clim Dyn 39, 1001–1020 (2012). https://doi.org/10.1007/s00382-011-1189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1189-8

Keywords

Navigation