Skip to main content

Advertisement

Log in

Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Air–sea ice–ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean–sea ice–atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean–sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bailey DA, Lynch AH (2000) Development of an Antarctic regional climate system model. Part I: Sea ice and large-scale circulation. J Clim 13:1337–1349

    Article  Google Scholar 

  • Bailey DA, Lynch AH, Arbetter TE (2004) Relationship between synoptic forcing and polynya formation in the Cosmonaut Sea: 2. Regional Climate Model Simulation. J Geophys Res 109:C04023

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines J-M, Treguier A-M, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Beckmann A, Goosse H (2003) A parametrization of ice shelf–ocean interaction for climate models. Ocean Model 5:157–170

    Article  Google Scholar 

  • Beranger K, Barnier B, Gulev S, Crepon M (2006) Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dyn 56:104–138

    Article  Google Scholar 

  • Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan AS (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Observations: oceanic climate change and sea level. Cambridge University Press, Cambridge

    Google Scholar 

  • Briegleb B, Ramanathan V (1982) Spectral and diurnal variations in clear sky planetary Albedo. J Appl Meteorol 21:1160–1171

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier A-M, Penduff T, Gulev S (2009) An ERA40 based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104

    Google Scholar 

  • Broecker WS, Peacock SL, Walker S, Weiss R, Fahrbach E, Schroeder M, Mikolajevicz U, Heinze C, Key R, Peng T-H, Rubin S (1998) How much deep water is formed in the Southern Ocean? J Geophys Res 103(C8):15833–15843

    Article  Google Scholar 

  • Bromwich DH, Chen B, Hines KM (1998) Global atmospheric impacts induced by year-round open water adjacent to Antarctica. J Geophys Res Atmos 103(D10)

  • Budillon G, Pacciaroni M, Cozzi S, Rivaro P, Catalano G, Ianni C, Cantoni C (2003) An Optimum multiparameter mixing analysis of the shelf waters in the Ross Sea. Antarct Sci 15:105–118

    Article  Google Scholar 

  • Budillon G, Rintoul SR (2003) Fronts and upper ocean thermal variability south of New Zeland. Antarct Sci 15:141–152

    Article  Google Scholar 

  • Cailleau S (2004) Validation de méthodes de contraintes aux frontières d’un modèle océanique: application à un modèle hauturier de l’Atlantique Nord et à un modèle régional du Golfe de Gascogne. PhD thesis, Universite Joseph Fourier, Grenoble 1, France

  • Carmack E (1977) Water characteristics of the Southern Ocean south of the Polar Front. A voyage of discovery

  • Carrasco J-F, Bromwich D, Monaghan A (2003) Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea Eastward to the Weddel Sea. Mon Weather Rev 131:289–301

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res Oceans 113(C7):C07004

    Article  Google Scholar 

  • Chan JCL, Duan Y, Shay LK (2001) Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J Atmos Sci 58(2):154–172

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25(5):477–496

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143

    Article  Google Scholar 

  • Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J Clim 13:1674–1696

    Article  Google Scholar 

  • Drakkar Group: Barnier B, Brodeau L, Le Sommer J, Molines J-M, Penduff T, Theetten S, Treguier A-M, Madec G, Biastoch A, C, B, Dengg J, Gulev S, Bourdallé Badie R, Chanut J, Garric G, Alderson S, Coward A, de Cuevas B, Haines K, Smith G, Drijfhout S, Hazeleger W, Severijns C, Myers P (2007) Eddy permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges 12-3:8–10

    Google Scholar 

  • Dufresne J-L, Grandpeix J-Y (1996) Raccordement des modèles Thermodynamiques de glace, d’océan, et d’atmosphère - Note interne 205. Technical report, Laboratoire de Météorologie Dynamique (LMD), France

  • Ebert EE, Curry JA (1993) An intermediate one-dimensional thermodynamic sea ice model for investigating ice–atmosphere interactions. J Geophys Res 98:10085–10109

    Article  Google Scholar 

  • Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, Broeke MR, Dixon DA, Ekaykin A, Holmlund P, Kameda T, Karlof L, Kaspari S, Lipenkov VY, Oerter H, Takahashi S, Vaughan DG (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys 46(2)

  • Fichefet T, Goosse H (1999) A numerical investigation of the spring Ross Sea polynya. Geophys Res Lett 26(8)

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C3):12609–12646

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268

    Article  Google Scholar 

  • Gallée H (1998) Simulation of blowing snow over the Antarctic ice sheet. Ann Glaciol 26:203–206

    Google Scholar 

  • Gallée H (1995) Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon Weather Rev 123:2050–2069

    Article  Google Scholar 

  • Gallée H, Guyonmarc’h G, Brun E (2001) Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Gallée H, Peyaud V, Goodwin I (2005) Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model. Ann Glaciol 41:1–6

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional meso-gamma primitive equations model, Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122:671–685

    Article  Google Scholar 

  • Genthon C, Krinner G, Sacchettini M (2003) Interannual Antarctic tropospheric circulation and precipitation variability. Clim Dyn 21:289–307

    Article  Google Scholar 

  • Giorgi F, Mearns O (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104(D6):6335–6352

    Article  Google Scholar 

  • Gordon A, Comiso J (1988) Polynyas in the southern ocean. Sci Am 258:90–97

    Article  Google Scholar 

  • Grenfell TC, Perovich DK (1984) Spectral albedos of sea ice and incident solar irradiance in the Southern Beaufort Sea. J Geophys Res 89:3573–3580

    Article  Google Scholar 

  • Griffies S, Biastoch A, B“oning C, Bryan F, Danabasoglu G, Chassignet E, England M, Gerdes R, Haak H, Hallberg R, Hazeleger W, Jungclaus J, Large WG, Madec G, Pirani A, Samuels BL, Scheinert M, Gupta AS, Severijns CA, Simmons HL, Treguier A-M, Winton M, Yeager S, Yin J (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model 26(1-2):1–46

    Article  Google Scholar 

  • Heinemann G, Klein T (2003) Simulations of topographically forced mesocyclones in the Weddel Sea and the Ross Sea Region of Antarctica. Mon Weather Rev 131:302–316

    Article  Google Scholar 

  • Holland MM, Raphael MN (2006) Twentieth century simulation of the southern hemisphere climate in coupled models. Part II: sea ice conditions and variability. Clim Dyn 26(2):229–245

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78(1):5–20

    Article  Google Scholar 

  • Jongma JI, Driesschaert E, Fichefet T, Goosse H, Renssen H (2009) The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model 26(1–2):104–113

    Article  Google Scholar 

  • Jourdain NC, Gallée H (2010) Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model. Clim Dyn (published online)

  • Kurtz DD, Bromwich DH (1985) A recurring, atmospherically forced polynya in Terra Nova Bay. Antarct Res Ser 43:493–508

    Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal forcing for ocean and sea-ice model: The data sets and flux climatologies, TN-460. Technical report, National Center for Atmospheric Research (NCAR), US

  • Lefebvre W, Goosse H (2008) Analysis of the projected regional sea-ice changes in the Southern Ocean during the twenty-first century. Clim Dyn 30(1):59–76

    Article  Google Scholar 

  • Lemarié F, Marchesiello P, Debreu L (2010) Global-in-time Schwarz methods applied to Two-Way Ocean-Atmosphere coupling: a study of tropical cyclone Erica. In preparation for J Geophys Res

  • Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an Earth System model. Geophys Res Lett 36:L21602

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30(24):2250

    Article  Google Scholar 

  • Madec G (2008) NEMO, the ocean engine. Technical report, Institut Pierre Simon Laplace (IPSL), France

  • Mathiot P (2009) Influence du forçage atmosphérique sur la représentation de la glace de mer de des eaux de plateau en Antarctique dans une étude de modélisation numérique. PhD thesis, Université Joseph Fourier, Grenoble 1

  • Mathiot P, Barnier B, Gallée H, Molines J-M, Le Sommer J, Juza M, Penduff T (2010a) Introducing katabatic winds in global ERA40 fields to simulate their impact on the Southern Ocean and sea-ice. Ocean Model (published online)

  • Mathiot P, Jourdain NC, Barnier B, Gallée H, Molines J-M, Le Sommer J (2010b) Sensitivity of coastal polynyas and high salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dyn (in revision)

  • Morales Maqueda MA, Willmott AJ, Biggs NRT (2004) Polynia dynamics: a review of observations and modeling. Rev Geophys 42:1–37

    Article  Google Scholar 

  • Morcrette JJ (2002) Assessment of the ECMWF Model cloudiness and surface radiation fields at the ARM SGP site. Mon Weather Rev 130:257–277

    Article  Google Scholar 

  • Noone D, Simmonds I (2004) Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J Geophys Res Atmos 109(D7):D07105

    Article  Google Scholar 

  • Olbers D, Hellmer H (2009) A box model of circulation and melting in ice shelf caverns. Ocean Dyn 60:141–153

    Article  Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43(1):55–109

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1991) Continental-scale simulation of the Antarctic Katabatic Wind Regime. J Clim 4:135–146

    Article  Google Scholar 

  • Rampal P, Weiss J, Marsan D, Lindsay R, Stern H (2008) Scaling properties of sea ice deformation from buoy dispersion analysis. J Geophys Res 113:C03002

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan RJ, Stouffer R, Sumi A, Taylor KE (2007) Climate Models and Their Evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Millers HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Pannel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Renner AHH, Heywood KJ, Thorpe SE (2009) Validation of three global ocean models in the Weddell Sea. Ocean Model 30:1–15

    Google Scholar 

  • Rignot E, Jacobs SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296(5575):2020

    Article  Google Scholar 

  • Shine KP, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res 90:2243–2250

    Article  Google Scholar 

  • Stearns CR, Weidner GA (1992) Antarctic Automatic Weather Stations: austral summer 1991–1992. Antarct J US 27:280–282

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Google Scholar 

  • Treguier A-M, England M, Rintoul SR, Madec G, Le Sommer J, Molines J-M (2007) Southern ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci Discuss 4:653–698

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, X Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The era-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Valcke S, Caubel A, Vogelsang R, Declat D (2004) OASIS3 user guide, 5th edn. PRISM

  • van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) The spatial and temporal variability of the surface mass balance in Antarctica: results from a regional atmospheric climate model. Int J Climatol 22:1197–1217

    Article  Google Scholar 

  • Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Morales Maqueda M (2009) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model 27(1-2):33–53

    Article  Google Scholar 

  • Wang Y (2000) An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: model description and control experiment. Mon Weather Rev 129:1370–1394

    Article  Google Scholar 

  • Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty, TL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92

    Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75(3):161–193

    Article  Google Scholar 

  • Yuan X, Martinson DG (2000) Antarctic sea ice extent variability and its global connectivity. J Clim 13(10):1697–1717

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Arnaud Caubel, Wonsun Park and Jean-Marc Molines for their technical help. The coupled global simulation D025 was kindly provided by Sébastien Masson. Numerical experiments were performed at IDRIS and MIRAGE computational centers. This work has benefited from useful comments of 2 anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas C. Jourdain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jourdain, N.C., Mathiot, P., Gallée, H. et al. Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica. Clim Dyn 36, 1523–1543 (2011). https://doi.org/10.1007/s00382-010-0889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0889-9

Keywords

Navigation