Skip to main content

Advertisement

Log in

Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Barkstrom BR (1984) The earth radiation budget experiment (ERBE). Bull Am Meteorol Soc 65:1170–1185

    Article  Google Scholar 

  • Bentamy A, Quilfen Y, Gohin F, Grima N, Lenaour M, Servain J (1996) Determination and validation of average wind fields from ERS-1 scatterometer measurements. Global Atmos Ocean Syst 4(1):1–29

    Google Scholar 

  • Biasutti M, Sobel A, Kushnir Y (2006) Agcm precipitation biases in the tropical atlantic. J Clim 19(6):935–958

    Article  Google Scholar 

  • Bony S, Dufresne JL, Le Treut H, Morcrette J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22(2–3):71–86

    Article  Google Scholar 

  • Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using toga coare data. J Atmos Sci 58(21):3158–3183

    Article  Google Scholar 

  • Braconnot P (1998) Tests de sensibilité avec le modèle d’atmosphère du lmd, en vue d’améliorer le couplage avec l’océan. note technique IPSL 2:39

  • Braconnot P, Joussaume J, Marti O, de Noblet N (2000) Impact of ocean and vegetation feedback on 6 ka monsoon changes. Canada, WCRP-111, WMO/TD-No. 1007

  • Chiang J, Vimont D (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158

    Article  Google Scholar 

  • Davey MK, Huddleston M, Sperber KR, Braconnot P, Bryan F, Chen D, Colman RA, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson TR, Latif M, Le Treut H, Li T, Manabe S, Mechoso CR, Meehl GA, Power SB, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington WM, Yoshikawa I, Yu JY, Yukimoto S, Zebiak SE (2002) Stoic: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18(5):403–420

    Article  Google Scholar 

  • Derbyshire SH, Beau I, Bechtold P, Grandpeix JY, Piriou JM, Redelsperger JL, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130(604):3055–3079

    Article  Google Scholar 

  • Dufresne JL, Grandpeix JY (1996) Raccordement des modèles thermodynamiques de glace, d’océan et d’atmosphère. Note Interne 205, L.M.D

  • Dufresne JL, Quaas J, Boucher O, Denvil S, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32(21). doi:10.1029/2005GLO23619

  • Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10):1405

    Article  Google Scholar 

  • Emanuel KA (1993) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res-Oceans 102(C6):12609–12646

    Article  Google Scholar 

  • Fu X, Wang B (2001) A coupled modeling study of the seasonal cycle of the pacific cold tongue. Part i: Simulation and sensitivity experiments. J Clim 14(5):765–779

    Article  Google Scholar 

  • Gordon C, Rosati A, Gudgel R (2000) Tropical sensitivity of a coupled model to specified isccp low clouds. J Clim 13(13):2239–2260

    Article  Google Scholar 

  • Grandpeix JY, Phillips V, Tailleux R (2004) Improved mixing representation in Emanuel’s convection scheme. Q J R Meteorol Soc 130(604):3207–3222

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere gcms: the dominant role of the atmospheric component. J Clim 17(24):4623–4629

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The lmdz4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001, the scientific basis. Cambridge University press, Cambridge

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice I (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19(1):GB1015

    Article  Google Scholar 

  • Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, DeWitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S (2001) ENSIP: the el nino simulation intercomparison project. Clim Dyn 18(3–4):255–276

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional paper, Washington

    Google Scholar 

  • Li X (1999) Ensemble atmospheric gcm simulations of climate interannual variability from 1979 to 1994. J Clim 12:986–1001

    Article  Google Scholar 

  • Ma CC, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and the tropical pacific circulation: a coupled ocean–atmosphere gcm study. J Clim 9(7):1635–1645

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbart M, Levy C (1998) Opa 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace 11:94 pp

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Foujols MA, Fichefet T, Friedlingstein P, Goosse H, Grandpeix JY, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, deNoblet N, Polcher J, Talandier C (2005) The new IPSL climate system model:IPSL-CM4. Note du Pôle de Modélisation n 26, ISSN 1288–1619

  • Meehl GA, Washington WM, Arblaster JM, Hu AX (2004) Factors affecting climate sensitivity in global coupled models. J Clim 17(7):1584–1596

    Article  Google Scholar 

  • Menkes C, Boulanger JP, Busalacchi AJ, Vialard J, Delecluse P, McPhaden MJ, Hackert E, Grima N (1998) Impact of TAO vs. ERS wind stresses onto simulations of the tropical pacific ocean during the 1993–1998 period by OPA ogcm. Climatic impact of scale interactions for the tropical ocean–atmosphere system. Euroclivar Workshop Rep. 13, pp 46–48

  • Nigam S, Chao Y (1996) Evolution dynamics of tropical ocean–atmosphere annual cycle variability. J Clim 9(12):3187–3205

    Article  Google Scholar 

  • Pyatt HE, Albrecht BA, Fairall C, Hare JE, Bond N, Minnis P, Ayers JK (2005) Evolution of marine atmospheric boundary layer structure across the cold tongue–ITCZ complex. J Clim 18(5):737–753

    Article  Google Scholar 

  • Reynolds RW (1988) A real time global sea-surface temperature analysis. J Clim 1:75–86

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2005) Sensitivity of the atlantic thermohaline circulation to global freshwater forcing. Clim Dyn. doi:101007/s00382-006-0171-3

  • Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33(7):L07711

    Article  Google Scholar 

  • Terray L, Sevault E, Guilyardi E, Thual O (1995) The OASIS coupler user guide version 2.0. Cerfacs technical report TR/CMGC:95–46

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Trenberth K, Salomon A (1994) The global heat balance: heat transports in the atmosphere and ocean. Clim Dyn 10:107–134

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wang B (1994) On the annual cycle in the tropical eastern central pacific. J Clim 7(12):1926–1942

    Article  Google Scholar 

  • Xie P, Arkin P (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9(4):840–858

    Article  Google Scholar 

  • Xie S, Saito K (2001) Formation and variability of a northerly ITCZ in a hybrid coupled AGCM: Continental forcing and oceanic–atmospheric feedback. J Clim 14(6):1262–1276

    Article  Google Scholar 

  • Yu JY, Mechoso CR (1999) Links between annual variations of peruvian stratocumulus clouds and of SST in the eastern equatorial pacific. J Clim 12(11):3305–3318

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all IPSL people who participate to the development of the IPSL_CM4 model. We also thank Laurent Fairhead for the introduction of the convection schemes in the LMDZ model, and Ionela Musat for the adjustments of the climatology. Computer time was provided by Centre National de la Recherche Scientifique (IDRIS computing center) and Commissariat à l’Energie Atomique (centre CCRT computing center). This work is a contribution to the european project ENSEMBLES (Project no. GOCE-CT-2003-505539) and to the french project PNEDC-MC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Braconnot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braconnot, P., Hourdin, F., Bony, S. et al. Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim Dyn 29, 501–520 (2007). https://doi.org/10.1007/s00382-007-0244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0244-y

Keywords

Navigation