Skip to main content

Advertisement

Log in

Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors

  • Research
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Packer RJ, Pfister S, Bouffet E et al (2017) Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 19(6):750–761

    CAS  PubMed  Google Scholar 

  2. Packer RJ, Iavarone A, Jones DTW et al (2020) Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 22(6):773–784

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfister S, Janzarik WG, Remke M et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118(5):1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones DT, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones DT, Hutter B, Jager N et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8):927–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones DTW, Kieran MW, Bouffet E et al (2018) Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology 20(2):160–173

    Article  CAS  PubMed  Google Scholar 

  8. Ryall S, Tabori U, Hawkins C (2020) Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 8(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ji RR, Gereau RW, Malcangio M et al (2009) MAP kinase and pain. Brain Res Rev 60(1):135–148

    Article  CAS  PubMed  Google Scholar 

  10. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76(1):1–10

    Article  CAS  PubMed  Google Scholar 

  11. Lassaletta A, Zapotocky M, Mistry M et al (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35(25):2934–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Becker AP, Scapulatempo-Neto C, Carloni AC et al (2015) KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. J Neuropathol Exp Neurol 74(7):743–754

    Article  CAS  PubMed  Google Scholar 

  13. Kim M, Lee KR, Choe G et al (2023) Diffuse leptomeningeal glioneuronal tumor with FGFR1 mutation in a 29-year-old male. J Korean Soc Radiol 84(4):970–976

    Article  PubMed  Google Scholar 

  14. Meredith DM, Cooley LD, Dubuc A et al (2023) ROS1 alterations as a potential driver of gliomas in infant, pediatric, and adult patients. Mod Pathol 36(11):100294

    Article  PubMed  Google Scholar 

  15. de Blank PMK, Fisher MJ, Liu GT et al (2017) Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuro-ophthalmol 37:S23–S32

    Article  Google Scholar 

  16. D'Angelo F, Ceccarelli M (2019) Tala et al. The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med 25(1):176–187

    Article  CAS  PubMed  Google Scholar 

  17. Fisher MJ, Jones DTW, Li Y et al (2021) Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol 141(4):605–617

    Article  CAS  PubMed  Google Scholar 

  18. Lucas CG, Sloan EA, Gupta R et al (2022) Multiplatform molecular analyses refine classification of gliomas arising in patients with neurofibromatosis type 1. Acta Neuropathol 144(4):747–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bandopadhayay P, Ramkissoon LA, Jain P et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qaddoumi I, Orisme W, Wen J et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131(6):833–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moreira DC, Qaddoumi I, Spiller S et al (2024) Comprehensive analysis of MYB/MYBL1-altered pediatric-type diffuse low-grade glioma. Neuro Oncol. https://doi.org/10.1093/neuonc/noae048

  22. Northcott PA, Pfister SM, Jones DT (2015) Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol 16(6):e293–e302

    Article  PubMed  Google Scholar 

  23. Braunstein S, Raleigh D, Bindra R et al (2017) Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 134(3):541–549

    Article  CAS  PubMed  Google Scholar 

  24. Ryall S, Krishnatry R, Arnoldo A et al (2016) Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 4(1):93

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jones DT, Gronych J, Lichter P et al (2012) MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 69(11):1799–1811

    Article  CAS  PubMed  Google Scholar 

  26. Banerjee A, Jakacki RI, Onar-Thomas A et al (2017) A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-Oncology 19(8):1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fangusaro J, Onar-Thomas A, Young Poussaint T et al (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20(7):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fangusaro J, Onar-Thomas A, Poussaint TY et al (2021) A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro Oncol 23(10):1777–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. U.S. Prescribing Information, Selumetinib, Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/213756s004lbl.pdf. Accessed 23 May 2024

  30. Perreault S, Larouche V, Tabori U et al (2019) A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer 19(1):1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Selt F, van Tilburg CM, Bison B et al (2020) Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neurooncol 149(3):499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manoharan N, Choi J, Chordas C et al (2020) Trametinib for the treatment of recurrent/progressive pediatric low-grade glioma. J Neurooncol 149(2):253–262

    Article  CAS  PubMed  Google Scholar 

  33. Paul MR, Pehlivan KC, Milburn M et al (2020) Trametinib-based treatment of pediatric CNS tumors: a single institutional experience. J Pediatr Hematol Oncol 42(8):e730–e737

    Article  CAS  PubMed  Google Scholar 

  34. Kondyli M, Larouche V, Saint-Martin C et al (2018) Trametinib for progressive pediatric low-grade gliomas. J Neurooncol 140(2):435–444

    Article  CAS  PubMed  Google Scholar 

  35. U.S. Prescribing Information, Binimetinib, Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/210498s009lbl.pdf. Accessed 23 May 2024

  36. U.S. Prescribing Information, Cobimetinib, Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/206192s006lbl.pdf. Accessed 23 May 2024

  37. Trippett T, Toledano H, Campbell Hewson Q et al (2022) Cobimetinib in pediatric and young adult patients with relapsed or refractory solid tumors (iMATRIX-cobi): a multicenter, phase I/II study. Target Oncol 17(3):283–293

    Article  PubMed  PubMed Central  Google Scholar 

  38. Robison N, Pauly J, Malvar J et al (2022) LTBK-04. LATE BREAKING ABSTRACT: MEK162 (binimetinib) in children with progressive or recurrent low-grade glioma: a multi-institutional phase II and target validation study. Neuro-Oncology 24(Supplement_1):i191–i192

    Article  PubMed Central  Google Scholar 

  39. Bouffet E, Hansford JR, Garre ML et al (2023) Dabrafenib plus trametinib in pediatric glioma with BRAF V600 mutations. N Engl J Med 389(12):1108–1120

    Article  CAS  PubMed  Google Scholar 

  40. U.S. Prescribing Information, Trametinib, Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204114s025lbl.pdf. Accessed 23 May 2024

  41. Odogwu L, Mathieu L, Blumenthal G et al (2018) FDA approval summary: dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist 23(6):740–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hargrave DR, Bouffet E, Tabori U et al (2019) Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin Cancer Res 25(24):7303–7311

    Article  CAS  PubMed  Google Scholar 

  43. Bouffet E, Geoerger B, Moertel C et al (2023) Efficacy and safety of trametinib monotherapy or in combination with dabrafenib in pediatric BRAF V600-mutant low-grade glioma. J Clin Oncol 41(3):664–674

    Article  CAS  PubMed  Google Scholar 

  44. Desai AV, Robinson GW, Gauvain K et al (2022) Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol 24(10):1776–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banerjee S, Crouse NR, Emnett RJ et al (2011) Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci U S A 108(38):15996–16001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nicolaides T, Nazemi KJ, Crawford J et al (2020) Phase I study of vemurafenib in children with recurrent or progressive BRAF(V600E) mutant brain tumors: Pacific Pediatric Neuro-Oncology Consortium study (PNOC-002). Oncotarget 11(21):1942–1952

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sievert AJ, Lang SS, Boucher KL et al (2013) Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A 110(15):5957–5962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karajannis MA, Legault G, Fisher MJ et al (2014) Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 16(10):1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun Y, Alberta JA, Pilarz C et al (2017) A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro Oncol 19(6):774–785

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hutt-Cabezas M, Karajannis MA, Zagzag D et al (2013) Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 15(12):1604–1614

    Article  PubMed  PubMed Central  Google Scholar 

  51. U.S. Prescribing Information, Everolimus, Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022334s6lbl.pdf. Accessed 23 May 2024

  52. Ullrich NJ, Prabhu SP, Reddy AT et al (2020) A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol 22(10):1527–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wright KD, Yao X, London WB et al (2021) A POETIC Phase II study of continuous oral everolimus in recurrent, radiographically progressive pediatric low-grade glioma. Pediatr Blood Cancer 68(2):e28787

    Article  CAS  PubMed  Google Scholar 

  54. Wright K, Krzykwa E, Greenspan L et al (2020) Ctni-19. Phase I trial of day101 in pediatric patients with radiographically recurrent or progressive low-grade glioma (Lgg). Neuro-Oncology 22(Supplement_2):ii46

    Article  PubMed Central  Google Scholar 

  55. Kilburn LB, Khuong-Quang DA, Hansford JR et al (2024) The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial. Nat Med 30(1):207–217

    Article  CAS  PubMed  Google Scholar 

  56. van Tilburg CM, Kilburn LB, Perreault S et al (2024) LOGGIC/FIREFLY-2: a phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 24(1):147

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lassman AB, Sepulveda-Sanchez JM, Cloughesy TF et al (2022) Infigratinib in patients with recurrent gliomas and FGFR alterations: a multicenter phase II study. Clin Cancer Res 28(11):2270–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doz F, van Tilburg CM, Geoerger B et al (2022) Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol 24(6):997–1007

    Article  CAS  PubMed  Google Scholar 

  59. Haas-Kogan DA, Aboian MS, Minturn JE et al (2024) Everolimus for children with recurrent or progressive low-grade glioma: results from the phase II PNOC001 trial. J Clin Oncol 42(4):441–451

    Article  CAS  PubMed  Google Scholar 

  60. Packer RJ, Jakacki R, Horn M et al (2009) Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr Blood Cancer 52(7):791–795

    Article  PubMed  Google Scholar 

  61. Gorsi HS, Khanna PC, Tumblin M et al (2018) Single-agent bevacizumab in the treatment of recurrent or refractory pediatric low-grade glioma: a single institutional experience. Pediatr Blood Cancer 65(9):e27234

    Article  PubMed  Google Scholar 

  62. Gururangan S, Fangusaro J, Poussaint TY et al (2014) Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas - a Pediatric Brain Tumor Consortium study. Neuro-Oncology 16(2):310–317

    Article  CAS  PubMed  Google Scholar 

  63. Green K, Panagopoulou P, D'Arco F et al (2022) A nationwide evaluation of bevacizumab-based treatments in paediatric low-grade glioma in the UK: safety. efficacy, visual morbidity and outcomes. Neuro Oncol 25(4):774–785

  64. de Marcellus C, Tauziede-Espariat A, Cuinet A et al (2022) The role of irinotecan-bevacizumab as rescue regimen in children with low-grade gliomas: a retrospective nationwide study in 72 patients. J Neurooncol 157(2):355–364

    Article  PubMed  Google Scholar 

  65. Siegel BI, Nelson D, Peragallo JH et al (2023) Visual outcomes after bevacizumab-based therapy for optic pathway glioma. Pediatr Blood Cancer 70(12):e30668

    Article  CAS  PubMed  Google Scholar 

  66. Heidary G, Fisher MJ, Liu GT et al (2020) Visual field outcomes in children treated for neurofibromatosis type 1-associated optic pathway gliomas: a multicenter retrospective study. J AAPOS 6:349.e341-349.e345

    Google Scholar 

  67. Bennebroek CAM, van Zwol J, Porro GL et al (2022) Impact of bevacizumab on visual function, tumor size, and toxicity in pediatric progressive optic pathway glioma: a retrospective nationwide multicentre study. Cancers (Basel) 14(24):6087

    Article  CAS  PubMed  Google Scholar 

  68. Hwang EI, Jakacki RI, Fisher MJ et al (2013) Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer 60(5):776–782

    Article  CAS  PubMed  Google Scholar 

  69. Mulcahy Levy JM, Zahedi S, Griesinger AM et al (2017) Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. Elife 6:e19671

    Article  PubMed  PubMed Central  Google Scholar 

  70. Touat M, Li YY, Boynton AN et al (2020) Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580(7804):517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burton EM, Amaria RN, Glitza IC et al (2021) Phase II Study of TRIplet combination Nivolumab (N) with Dabrafenib (D) and Trametinib (T) (TRIDeNT) in patients (pts) with PD-1 naïve or refractory BRAF-mutated metastatic melanoma (MM) with or without active brain metastases. J Clin Oncol 39(15_suppl):9520–9520

    Article  Google Scholar 

  72. Urban H, Steidl E, Hattingen E et al (2022) Immune checkpoint inhibitor-induced cerebral pseudoprogression: patterns and categorization. Front Immunol 12:798811

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hardin EC, Schmid S, Sommerkamp A et al (2023) LOGGIC Core BioClinical Data Bank: Added clinical value of RNA-Seq in an international molecular diagnostic registry for pediatric low-grade glioma patients. Neuro Oncol 25(11):2087–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bitterman DS, MacDonald SM, Yock TI et al (2019) Revisiting the role of radiation therapy for pediatric low-grade glioma. J Clin Oncol 37(35):3335–3339

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fangusaro J, Avery RA, Fisher MJ et al (2024) Considering functional outcomes as efficacy endpoints in pediatric low-grade glioma clinical trials: an FDA educational symposium. Clin Cancer Res 30(11):2303–2308

    Article  PubMed  Google Scholar 

  76. Wan MJ, Ullrich NJ, Manley PE et al (2016) Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neurooncol 129(1):173–178

    Article  PubMed  Google Scholar 

  77. Jacob K, Quang-Khuong DA, Jones DT et al (2011) Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 17(14):4650–4660

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Gilbert Family Neurofibromatosis Institute of Children’s National Hospital and the many donors of the Brain Tumor Institute of Children’s National Hospital for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Benjamin I. Siegel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegel, B.I., Duke, E.S., Kilburn, L.B. et al. Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors. Childs Nerv Syst 40, 3251–3262 (2024). https://doi.org/10.1007/s00381-024-06486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-024-06486-6

Keywords