Skip to main content

Advertisement

Log in

Comparative analysis of linezolid, vancomycin, and hyperbaric oxygen therapies in a rat model of ventriculoperitoneal shunt infection

  • Research
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Staphylococcus epidermidis is the most common causative microorganism of ventriculoperitoneal shunt infections. This study aimed to compare linezolid and vancomycin treatments and to examine the effect of these antibiotics alone and combined with hyperbaric oxygen therapy on the amount of bacterial colonies in the experimental S. epidermidis shunt infection model.

Methods

A shunt catheter was placed in the cisterna magna of 49 adult male Wistar albino rats. The rats were randomly divided into seven groups, as follows: sterile control, infected control, vancomycin, linezolid, hyperbaric oxygen, vancomycin + hyperbaric oxygen, linezolid + hyperbaric oxygen. In all groups except the sterile control group, 0.2 ml 107 CFU/mL S. epidermidis was inoculated to the cisterna magna. Parenteral vancomycin was administered 40 mg/kg/day to the vancomycin groups, and 50 mg/kg/day of enteral linezolid to the linezolid groups. Hyperbaric oxygen groups were given 100% oxygen at a pressure of 2.4 ATA for 50 min a day. One day after the last treatment, colony quantities in the shunt catheters and CSF were analyzed.

Results

The number of CSF colonies in the linezolid group was significantly lower than in the vancomycin group (p < 0.05). The number of CSF colonies in the linezolid + HBO group was significantly lower than in the vancomycin + HBO group (p < 0.05).

Conclusions

Linezolid treatment was found to be more effective than vancomycin in ventriculoperitoneal shunt infection caused by S. epidermidis. There was no statistical difference among other treatment groups. Hyperbaric oxygen therapy is shown to contribute to the sterilization of cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Bartek J Jr, Jakola AS, Skyrman S, Forander P, Alpkvist P, Schechtmann G, Glimaker M, Larsson A, Lind F, Mathiesen T (2016) Hyperbaric oxygen therapy in spontaneous brain abscess patients: a population-based comparative cohort study. Acta Neurochir (Wien) 158:1259–1267

    Article  PubMed  Google Scholar 

  2. Beckman JM, Amankwah EK, Tetreault LL, Tuite GF (2015) Reduction in CSF shunt infection over a 10-year period associated with the application of concentrated topical antibiotic powder directly to surgical wounds prior to closure. J Neurosurg Pediatr 16:648–661

    Article  PubMed  Google Scholar 

  3. Castro P, Soriano A, Escrich C, Villalba G, Sarasa M, Mensa J (2005) Linezolid treatment of ventriculoperitoneal shunt infection without implant removal. Eur J Clin Microbiol Infect Dis 24:603–606

    Article  CAS  PubMed  Google Scholar 

  4. Cottagnoud P, Gerber CM, Acosta F, Cottagnoud M, Neftel K, Tauber MG (2000) Linezolid against penicillin-sensitive and -resistant pneumococci in the rabbit meningitis model. J Antimicrob Chemother 46:981–985

    Article  CAS  PubMed  Google Scholar 

  5. Farahmand D, Hilmarsson H, Hogfeldt M, Tisell M (2009) Perioperative risk factors for short term shunt revisions in adult hydrocephalus patients. J Neurol Neurosurg Psychiatry 80:1248–1253

    Article  CAS  PubMed  Google Scholar 

  6. Fux CA, Quigley M, Worel AM, Post C, Zimmerli S, Ehrlich G, Veeh RH (2006) Biofilm-related infections of cerebrospinal fluid shunts. Clin Microbiol Infect 12:331–337

    Article  CAS  PubMed  Google Scholar 

  7. Gill AL, Bell CN (2004) Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM 97:385–395

    Article  CAS  PubMed  Google Scholar 

  8. Hazer DB, Mut M, Dincer N, Saribas Z, Hazer B, Ozgen T (2012) The efficacy of silver-embedded polypropylene-grafted polyethylene glycol-coated ventricular catheters on prevention of shunt catheter infection in rats. Childs Nerv Syst 28:839–846

    Article  PubMed  Google Scholar 

  9. Hirsch JF (1992) Surgery of hydrocephalus: past, present and future. Acta Neurochir (Wien) 116:155–160

    Article  CAS  PubMed  Google Scholar 

  10. James HE, Bradley JS (2008) Management of complicated shunt infections: a clinical report. J Neurosurg Pediatr 1:223–228

    Article  PubMed  Google Scholar 

  11. Kaplan SL, Deville JG, Yogev R, Morfin MR, Wu E, Adler S, Edge-Padbury B, Naberhuis-Stehouwer S, Bruss JB, Linezolid Pediatric Study G (2003) Linezolid versus vancomycin for treatment of resistant Gram-positive infections in children. Pediatr Infect Dis J 22:677–686

    Article  Google Scholar 

  12. Kestle JR, Holubkov R, Douglas Cochrane D, Kulkarni AV, Limbrick DD, Jr., Luerssen TG, Jerry Oakes W, Riva-Cambrin J, Rozzelle C, Simon TD, Walker ML, Wellons JC, 3rd, Browd SR, Drake JM, Shannon CN, Tamber MS, Whitehead WE, Hydrocephalus Clinical Research N (2016) A new Hydrocephalus Clinical Research Network protocol to reduce cerebrospinal fluid shunt infection. J Neurosurg Pediatr 17:391–396

    Article  Google Scholar 

  13. Kurschel S, Mohia A, Weigl V, Eder HG (2006) Hyperbaric oxygen therapy for the treatment of brain abscess in children. Childs Nerv Syst 22:38–42

    Article  PubMed  Google Scholar 

  14. Kurt T, Vural A, Temiz A, Ozbudak E, Yener AU, Sacar S, Sacar M (2015) Adjunctive hyperbaric oxygen therapy or alone antibiotherapy? Methicillin resistant Staphylococcus aureus mediastinitis in a rat model. Braz J Cardiovasc Surg 30:538–543

    PubMed  PubMed Central  Google Scholar 

  15. Larsson A, Engstrom M, Uusijarvi J, Kihlstrom L, Lind F, Mathiesen T (2002) Hyperbaric oxygen treatment of postoperative neurosurgical infections. Neurosurgery 50(2):287–295; discussion 295-6

  16. Marchese A, Schito GC (2001) The oxazolidinones as a new family of antimicrobial agent. Clin Microbiol Infect 7(Suppl 4):66–74

    Article  CAS  PubMed  Google Scholar 

  17. McGirt MJ, Zaas A, Fuchs HE, George TM, Kaye K, Sexton DJ (2003) Risk factors for pediatric ventriculoperitoneal shunt infection and predictors of infectious pathogens. Clin Infect Dis 36:858–862

    Article  PubMed  Google Scholar 

  18. Muhvich KH, Myers RA, Marzella L (1988) Effect of hyperbaric oxygenation, combined with antimicrobial agents and surgery, in a rat model of intraabdominal infection. J Infect Dis 157:1058–1061

    Article  CAS  PubMed  Google Scholar 

  19. Parker SL, McGirt MJ, Murphy JA, Megerian JT, Stout M, Engelhart L (2015) Cost savings associated with antibiotic-impregnated shunt catheters in the treatment of adult and pediatric hydrocephalus. World Neurosurg 83:382–386

    Article  PubMed  Google Scholar 

  20. Pirotte BJ, Lubansu A, Bruneau M, Loqa C, Van Cutsem N, Brotchi J (2007) Sterile surgical technique for shunt placement reduces the shunt infection rate in children: preliminary analysis of a prospective protocol in 115 consecutive procedures. Childs Nerv Syst 23:1251–1261

    Article  PubMed  Google Scholar 

  21. Prusseit J, Simon M, von der Brelie C, Heep A, Molitor E, Volz S, Simon A (2009) Epidemiology, prevention and management of ventriculoperitoneal shunt infections in children. Pediatr Neurosurg 45:325–336

    Article  PubMed  Google Scholar 

  22. Sanderson P, Goodwin PC (2015) Evidence for the use of Hyperbaric Oxygen Therapy (HBOT): a review. Manchester Metropolitan University, Manchester

    Google Scholar 

  23. Stevens NT, Greene CM, O’Gara JP, Bayston R, Sattar MT, Farrell M, Humphreys H (2012) Ventriculoperitoneal shunt-related infections caused by Staphylococcus epidermidis: pathogenesis and implications for treatment. Br J Neurosurg 26:792–797

    Article  PubMed  Google Scholar 

  24. Thom SR (2011) Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg 127(Suppl 1):131S-141S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Turhan V, Sacar S, Uzun G, Sacar M, Yildiz S, Ceran N, Gorur R, Oncul O (2009) Hyperbaric oxygen as adjunctive therapy in experimental mediastinitis. J Surg Res 155:111–115

    Article  CAS  PubMed  Google Scholar 

  26. Viale P, Pagani L, Cristini F, Stefini R, Bergomi R, Colombini P, Carosi G (2002) Linezolid for the treatment of central nervous system infections in neurosurgical patients. Scand J Infect Dis 34:456–459

    Article  CAS  PubMed  Google Scholar 

  27. Xu H, Hu F, Hu H, Sun W, Jiao W, Li R, Lei T (2016) Antibiotic prophylaxis for shunt surgery of children: a systematic review. Childs Nerv Syst 32:253–258

    Article  CAS  PubMed  Google Scholar 

  28. Yakut N, Soysal A, Kepenekli Kadayifci E, Dalgic N, Yilmaz Ciftdogan D, Karaaslan A, Akkoc G, Ocal Demir S, Cagan E, Celikboya E, Kanik A, Dagcinar A, Yilmaz A, Ozer F, Camlar M, Turel O, Bakir M (2018) Ventriculoperitoneal shunt infections and re-infections in children: a multicentre retrospective study. Br J Neurosurg 32:196–200

    Article  PubMed  Google Scholar 

  29. Bartek J Jr, Skyrman S, Nekludov M, Mathiesen T, Lind F, Schechtmann G (2018) Hyperbaric oxygen therapy as adjuvant treatment for hardware-related infections in neuromodulation. Stereotact Funct Neurosurg 96:100–107

    Article  PubMed  Google Scholar 

  30. Yang L, Wang X, Li Y, Chen L, Yan Z, She L, Dong J (2017) The clinical effect of postoperative hyperbaric oxygen therapy on idiopathic normal pressure hydrocephalus: a retrospective and comparative analysis of 61 patients with ventriculoperitoneal shunt. World Neurosurg 104:376–380

    Article  PubMed  Google Scholar 

  31. Baechli H, Schmutz J, Mayr JM (2008) Hyperbaric oxygen therapy (HBO) for the treatment of an epidural abscess in the posterior fossa in an 8-month-old infant. Pediatr Neurosurg 44:239–242

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.Ş.: drafting the article, conception and design, analysis, and interpretation of data, drafting the article, statistical analysis. E.S.: conception and design, analysis, and interpretation of data Y.A.: administrative, technical, material support. Y.B.: conception and design, critically revising the article, study supervision.

Corresponding author

Correspondence to Yaşar Bayri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, Y., Sayın, E., Aslan, Y. et al. Comparative analysis of linezolid, vancomycin, and hyperbaric oxygen therapies in a rat model of ventriculoperitoneal shunt infection. Childs Nerv Syst 40, 1765–1769 (2024). https://doi.org/10.1007/s00381-024-06305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-024-06305-y

Keywords

Navigation