Skip to main content

Advertisement

Log in

Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Urocortin-1 (UCN), a member of the corticotropin-releasing factor, is a cardioprotective peptide, and is also involved in cardiac hypertrophy. The involvement of GSK-3β, a pivotal kinase in cardiac hypertrophy, in response to UCN is not yet documented. Cardiomyocytes from adult rats were stimulated for 48 h with UCN. Cell size, protein, and DNA contents were determined. Phosphorylated and total forms GSK-3β and the total amount of β-catenin were quantified by Western immunoblots. The effects of astressin, a UCN competitive receptor antagonist, were also evaluated. UCN increased cell size and the protein-to-DNA ratio, in accordance with a hypertrophic response. This effect was associated with increased phosphorylation of GSK-3β and marked accumulation of β-catenin, a downstream element to GSK-3β. All these effects were prevented by astressin and LY294002, an inhibitor of the phosphatidyl-inositol-3-kinase. UCN-induced cardiomyocytes hypertrophy is associated with regulation of GSK-3β, a pivotal kinase involved in cardiac hypertrophy, in a PI3K-dependent manner. Furthermore, the pharmacological blockade of UCN receptors was able to prevent UCN-induced hypertrophy, which leads to inhibition of the Akt/GSK-3β pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23:71–77

    Article  PubMed  CAS  Google Scholar 

  2. Burnett JC Jr (2005) Urocortin: advancing the neurohumoral hypothesis of heart failure. Circulation 112:3544–3546

    Article  PubMed  Google Scholar 

  3. Charles CJ, Rademaker MT, Richards AM (2004) Urocortins: putative role in cardiovascular disease. Curr Med Chem Cardiovasc Hematol Agents 2:43–47

    Article  PubMed  CAS  Google Scholar 

  4. Kimura Y, Takahashi K, Totsune K, Muramatsu Y, Kaneko C, Darnel AD, Suzuki T, Ebina M, Nukiwa T, Sasano H (2002) Expression of urocortin and corticotropin-releasing factor receptor subtypes in the human heart. J Clin Endocrinol Metab 87:340–346

    Article  PubMed  CAS  Google Scholar 

  5. Nishikimi T, Miyata A, Horio T, Yoshihara F, Nagaya N, Takishita S, Yutani C, Matsuo H, Matsuoka H, Kangawa K (2000) Urocortin, a member of the corticotropin-releasing factor family, in normal and diseased heart. Am J Physiol Heart Circ Physiol 279:H3031–H3039

    PubMed  CAS  Google Scholar 

  6. Wright SP, Doughty RN, Frampton CM, Gamble GD, Yandle TG, Richards AM (2009) Plasma urocortin 1 in human heart failure. Circ Heart Fail 2:465–471

    Article  PubMed  CAS  Google Scholar 

  7. Ng LL, Loke IW, O’Brien RJ, Squire IB, Davies JE (2004) Plasma urocortin in human systolic heart failure. Clin Sci 106:383–388

    Article  PubMed  CAS  Google Scholar 

  8. Gruson D, Ahn SA, Ketelslegers JM, Rousseau MF (2010) Circulating levels of stress associated peptide urocortin in heart failure patients. Peptides 31:354–356

    Article  PubMed  CAS  Google Scholar 

  9. Wiley KE, Davenport AP (2004) CRF2 receptors are highly expressed in the human cardiovascular system and their cognate ligands urocortins 2 and 3 are potent vasodilators. Br J Pharmacol 143:508–514

    Article  PubMed  CAS  Google Scholar 

  10. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548

    Article  PubMed  CAS  Google Scholar 

  11. Dorn GW, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    PubMed  CAS  Google Scholar 

  12. Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jamshidi Y, Stephanou A, Knight RD, Hsu SY, Hsueh AJ, Latchman DS (2005) Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun 328:442–448

    Article  PubMed  CAS  Google Scholar 

  13. Kerkela R, Woulfe K, Force T (2007) Glycogen synthase kinase-3beta—actively inhibiting hypertrophy. Trends Cardiovasc Med 17:91–96

    Article  PubMed  Google Scholar 

  14. Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063

    Article  PubMed  CAS  Google Scholar 

  15. Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153(Suppl 1):S137–S153

    PubMed  CAS  Google Scholar 

  16. Kim Y, Park MK, Chung S (2010) Protective effect of urocortin on 1-methyl-4-phenylpyridinium-induced dopaminergic neuronal death. Mol Cells 30(5):427–433

    Google Scholar 

  17. Wang MJ, Lin SZ, Kuo JS, Huang HY, Tzeng SF, Liao CH, Chen DC, Chen WF (2007) Urocortin modulates inflammatory response and neurotoxicity induced by microglial activation. J Immunol 179:6204–6214

    PubMed  CAS  Google Scholar 

  18. Huang HY, Lin SZ, Chen WF, Li KW, Kuo JS, Wang MJ (2009) Urocortin modulates dopaminergic neuronal survival via inhibition of glycogen synthase kinase-3beta and histone deacetylase. Neurobiol Aging [Epub ahead of print]

  19. Gruson D, Ginion A, Decroly N, Lause P, Vanoverschelde JL, Ketelslegers JM, Bertrand L, Thissen JP (2010) Urotensin II induction of adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathway. Peptides 31:1326–1333

    Article  PubMed  CAS  Google Scholar 

  20. Ikeda K, Tojo K, Otsubo C, Udagawa T, Hosoya T, Tajima N, Nakao K, Kawamura M (2005) Effects of urocortin II on neonatal rat cardiac myocytes and non-myocytes. Peptides 26:2473–2481

    Article  PubMed  CAS  Google Scholar 

  21. Brar BK, Stephanou A, Knight R, Latchman DS (2002) Activation of protein kinase B/Akt by urocortin is essential for its ability to protect cardiac cells against hypoxia/reoxygenation-induced cell death. J Mol Cell Cardiol 34:483–492

    Article  PubMed  CAS  Google Scholar 

  22. Ikeda K, Tojo K, Sato S, Ebisawa T, Tokudome G, Hosoya T, Harada M, Nakagawa O, Nakao K (1998) Urocortin, a newly identified corticotropin-releasing factor-related mammalian peptide, stimulates atrial natriuretic peptide and brain natriuretic peptide secretions from neonatal rat cardiomyocytes. Biochem Biophys Res Commun 250:298–304

    Article  PubMed  CAS  Google Scholar 

  23. Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 99:907–912

    Article  PubMed  CAS  Google Scholar 

  24. Kerkela R, Kockeritz L, Macaulay K, Zhou J, Doble BW, Beahm C, Greytak S, Woulfe K, Trivedi CM, Woodgett JR, Epstein JA, Force T, Huggins GS (2008) Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest 118:3609–3618

    Article  PubMed  CAS  Google Scholar 

  25. Force T, Woodgett JR (2009) Unique and overlapping functions of GSK-3 isoforms in cell differentiation and proliferation and cardiovascular development. J Biol Chem 284:9643–9647

    Article  PubMed  CAS  Google Scholar 

  26. Otsuka K, Terasaki F, Shimomura H, Tsukada B, Horii T, Isomura T, Suma H, Shibayama Y, Kitaura Y (2010) Enhanced expression of the ubiquitin–proteasome system in the myocardium from patients with dilated cardiomyopathy referred for left ventriculoplasty: an immunohistochemical study with special reference to oxidative stress. Heart Vessels 25:474–484

    Article  PubMed  Google Scholar 

  27. Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci USA 100:4610–4615

    Article  PubMed  CAS  Google Scholar 

  28. Railson JE, Liao Z, Brar BK, Buddle JC, Pennica D, Stephanou A, Latchman DS (2002) Cardiotrophin-1 and urocortin cause protection by the same pathway and hypertrophy via distinct pathways in cardiac myocytes. Cytokine 17:243–253

    Article  PubMed  CAS  Google Scholar 

  29. Hiraoka E, Kawashima S, Takahashi T, Rikitake Y, Hirase T, Yokoyama M (2003) PI 3-kinase-Akt-p70 S6 kinase in hypertrophic responses to leukemia inhibitory factor in cardiac myocytes. Kobe J Med Sci 49:25–37

    PubMed  CAS  Google Scholar 

  30. O’toole A, Moule SK, Lockyer PJ, Halestrap AP (2001) Tumour necrosis factor-alpha activation of protein kinase B in WEHI-164 cells is accompanied by increased phosphorylation of Ser473, but not Thr308. Biochem J 359:119–127

    Article  PubMed  Google Scholar 

  31. Lu C, Schwartzbauer G, Sperling MA, Devaskar SU, Thamotharan S, Robbins PD, McTiernan CF, Liu JL, Jiang J, Frank SJ, Menon RK (2001) Demonstration of direct effects of growth hormone on neonatal cardiomyocytes. J Biol Chem 276:22892–22900

    Article  PubMed  CAS  Google Scholar 

  32. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6 K pathways. J Biol Chem 281:20666–20672

    Article  PubMed  CAS  Google Scholar 

  33. He JG, Chen SL, Huang YY, Dong YG, Ma H (2010) The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin II through downregulation of transforming growth factor-beta1/Smad2 expression. Heart Vessels 25:438–443

    Article  PubMed  Google Scholar 

  34. Omae K, Ogawa T, Yoshikawa M, Nitta K (2010) The use of H1-receptor antagonists and left ventricular remodeling in patients on chronic hemodialysis. Heart Vessels 25:163–169

    Article  PubMed  Google Scholar 

  35. Hernandez F, Nido JD, Avila J, Villanueva N (2009) GSK3 inhibitors and disease. Mini Rev Med Chem 9:1024–1029

    Article  PubMed  CAS  Google Scholar 

  36. Cohen P, Goedert M (2004) GSK3 inhibitors development and therapeutic potential. Nat Rev Drug Discov 3:479–487

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Gruson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruson, D., Ginion, A., Decroly, N. et al. Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway. Heart Vessels 27, 202–207 (2012). https://doi.org/10.1007/s00380-011-0141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0141-5

Keywords

Navigation