Skip to main content
Log in

Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow (2013) during landfall. The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds, but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds. The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation. The increases (decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence (absence) of radiative effects of ice clouds, or the removal of radiative effects of ice clouds in the presence (absence) of radiative effects of water clouds, correspond mainly to the enhancements (reductions) in net condensation.

The mean rain rate is a product of rain intensity and fractional rainfall coverage. The radiation-induced difference in the mean rain rate is related to the difference in rain intensity. The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762–772.

    Article  Google Scholar 

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo. 104606, Vol. 3, 85 pp. [Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD20771.]

    Google Scholar 

  • Chou, M. D., D. P. Kratz, and W. Ridgway, 1991: Infrared radiation parameterizations in numerical climate models. J. Climate, 4, 424–437.

    Article  Google Scholar 

  • Chou, M. D., M. J. Suarez, C. H. Ho, M. M. H. Yan, and K. T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 202–214.

    Article  Google Scholar 

  • Cui, X. P., and X. F. Li, 2006: Role of surface evaporation in surface rainfall processes. J. Geophys. Res., 111, D17112, doi: 10.1029/2005JD006876.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Gao, S. T., and X. F. Li, 2008: Cloud-resolving Modeling of Convective Processes. Springer, Dordrecht, 206 pp.

    Book  Google Scholar 

  • Gao, S. T., and X. F. Li, 2010: Precipitation equations and their applications to the analysis of diurnal variation of tropical oceanic rainfall. J. Geophys. Res., 115, D08204, doi: 10.1029/2009JD012452.

    Google Scholar 

  • Gao, S. T., X. P. Cui, Y. S. Zhou, and X. F. Li, 2005: Surface rainfall processes as simulated in a cloud-resolving model. J. Geophys. Res., 110, D10202, doi: 10.1029/2004JD005467.

    Article  Google Scholar 

  • Gao, S. T., X. P. Cui, and X. F. Li, 2009: A modeling study of diurnal rainfall variations during the 21-day period of TOGA COARE. Adv. Atmos. Sci., 26, 895–905, doi: 10.1007/ s00376-009-8123-6.

    Article  Google Scholar 

  • Grabowski, W. W., X. Q. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.

    Article  Google Scholar 

  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171–1188.

    Article  Google Scholar 

  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607–625.

    Article  Google Scholar 

  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281–287.

    Article  Google Scholar 

  • Li, X. F., and S. T. Gao, 2011: Precipitation Modeling and Quantitative Analysis. Springer, Dordrecht, 240 pp.

    Google Scholar 

  • Li, X. F., C.-H. Sui, K.-M. Lau, and M.-D. Chou, 1999: Largescale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028–3042.

    Article  Google Scholar 

  • Li, X. F., C.-H. Sui, and K.-M. Lau, 2002: Dominant cloud microphysical processes in a tropical oceanic convective system: A 2-D cloud resolving modeling study. Mon. Wea. Rev., 130, 2481–2491.

    Article  Google Scholar 

  • Li, X. F., G. Q. Zhai, S. T. Gao, and X. Y. Shen, 2014: A new convective-stratiform rainfall separation scheme. Atmos. Sci. Lett., 15, 245–251.

    Google Scholar 

  • Li, X. F., G. Q. Zhai, P. J. Zhu, and R. Liu, 2015: An equilibrium cloud-resolving modeling study of diurnal variation of tropical rainfall. Dyn. Atmos. Ocean, 71, 108–117.

    Article  Google Scholar 

  • Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45, 1594–1605.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Ping, F., Z. Luo, and H. Wang, 2011: Effects of ice and water clouds on rainfall: A partitioning analysis based on surface rainfall budget. Atmos. Sci. Lett., 12, 300–308.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seederfeeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.

    Article  Google Scholar 

  • Soong, S. T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035–2050.

    Article  Google Scholar 

  • Soong, S. T., and W.-K. Tao, 1980: Response of deep tropical cumulus clouds to Mesoscale processes. J. Atmos. Sci., 37, 2016–2034.

    Article  Google Scholar 

  • Sui, C.-H., K.-M. Lau, W.-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711–728.

    Article  Google Scholar 

  • Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639–655.

    Article  Google Scholar 

  • Sui, C.-H., X. Li, and K.-M. Lau, 1998: Radiative-convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 2345–2359.

    Article  Google Scholar 

  • Sui, C.-H., X. F. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 4358–4370.

    Article  Google Scholar 

  • Tao, W. K., and S. T. Soong, 1986: A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 2653–2676.

    Article  Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terrestrial Atmospheric and Oceanic Sciences, 4, 35–72.

    Google Scholar 

  • Tao, W.-K., J. Simpson, and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44, 3175–3187.

    Article  Google Scholar 

  • Tao, W.-K, J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231–235.

    Article  Google Scholar 

  • Tao, W. K., J. Simpson, C. H. Sui, B. Ferrier, S. Lang, J. Scala, M. D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673–690.

    Article  Google Scholar 

  • Tompkins, A. M., 2000: The impact of dimensionality on longterm cloud-resolving model simulations. Mon. Wea. Rev., 128, 1521–1535.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, L., Li, X. Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013). Adv. Atmos. Sci. 33, 101–109 (2016). https://doi.org/10.1007/s00376-015-5139-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5139-y

Key words

Navigation