Skip to main content
Log in

Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Most climate models project a weakening of theWalker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall–moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a “double-cell” circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the “double cell” circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Bayr, T., D. Dommenget, T. Martin, and S. B. Power, 2014: The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., 43, 2747–2763, doi: 10.1007/s00382-014-2091-y.

    Article  Google Scholar 

  • Clement, A. C., R. S. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196.

    Article  Google Scholar 

  • Dinezio, P., A. Clement, and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. EOS, Transactions American Geophysical Union, 91(16), 141–142.

    Article  Google Scholar 

  • Dinezio, P. N., A. C. Clement, G. A. Vecchi, B. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 4873–4892.

    Article  Google Scholar 

  • Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699.

    Article  Google Scholar 

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed., Academic Press, 535 pp.

    Google Scholar 

  • Hsu, P.-C., and T. Li, 2012: Is “rich-get-richer” valid for Indian Ocean and Atlantic ITCZ? Geophys. Res. Lett., 39, L13705, doi: 10.1029/2012GL052399.

    Google Scholar 

  • Huang, X. L., H. W. Chuang, A. Dessler, X. H. Chen, K. Minschwaner, Y. Ming, and V. Ramaswamy, 2013: A radiativeconvective equilibrium perspective of weakening of the tropical walker circulation in response to global warming. J. Climate, 26(5), 1643–1653.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., and Coauthors, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 950 pp.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Emanuel and Raymond, Eds., Amer. Meteor. Soc., 165–170.

    Google Scholar 

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled oceanatmosphere model. J. Climate, 8, 2181–2199.

    Article  Google Scholar 

  • Merrifield, M. A., 2011: A shift in western Tropical Pacific Sea level trends during the 1990s. J. Climate, 24, 4126–4138.

    Article  Google Scholar 

  • Mizuta, R., and Coauthors, 2012: Climate simulations using the improved MRI-AGCM with 20-km grid. J. Meteor. Soc. Japan, 90A, 235–260.

    Google Scholar 

  • Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39(9–10), 2569–2584.

    Article  Google Scholar 

  • Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker Circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103–117, doi: 10.1007/s00382-014-2135-3.

    Article  Google Scholar 

  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, 302–323.

    Article  Google Scholar 

  • Shine, K. P., R. G. Derwent, D. J. Wuebbles, and J.-J. Morcrette, 1990: Radiative forcing of climate. Climate Change: The IPCC Scientific Assessment, Houghton et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 41–68.

    Google Scholar 

  • Singh, M. S, and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25(23), 8259–8276.

    Article  Google Scholar 

  • Stocker, T. F., 2001: Climate Change 2001: The Scientific Basis. Chapter 7, J. T. Houghton, Eds., Cambridge Univ. Press, Cambridge, 417–470.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation, J. Climate, 20, 4316–4340.

    Article  Google Scholar 

  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Transactions American Geophysical Union, 89, 81–83.

    Article  Google Scholar 

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.

    Article  Google Scholar 

  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.

    Article  Google Scholar 

  • Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Wea. Rev., 143, 597–621.

    Article  Google Scholar 

  • Yukimoto, S. H., and Coauthors, 2011: Meteorological research institute-earth system model Version 1 (MRI-ESM1)—Model description. Technical Reports of the Meteorological Research Institute, No. 64, 96 pp.

    Google Scholar 

  • Zhang, L., and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 8413–8421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, L. & Murakami, H. Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation. Adv. Atmos. Sci. 32, 1473–1480 (2015). https://doi.org/10.1007/s00376-015-5033-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5033-7

Keywords

Navigation