Skip to main content
Log in

The impact of surface properties on downward surface shortwave radiation over the Tibetan Plateau

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The complexity of inhomogeneous surface-atmosphere radiation transfer is one of the foremost problems in the field of atmospheric physics and atmospheric radiation. To date, the influence of surface properties on shortwave radiation has not been well studied. The daily downward surface shortwave radiation of the latest FLASHFlux/CERES (Fast Longwave And Shortwave Fluxes_Time Interpolated and Spatially Averaged/Clouds and the Earth’s Radiant Energy System) satellite data was evaluated against in situ data. The comparison indicated that the differences between the two data sets are unstable and large over rugged terrain compared with relatively flat terrain, and the mean absolute error of the satellite products reaches 31.4 W m−2 (12.3%) over rugged terrain. Based on the SSF (single satellite footprint)/CERES product, the influence of surface properties on the distribution of downward surface shortwave radiation (DSSR) was analyzed. The influence of surface properties on DSSR over the Tibetan Plateau is about twice as large as that in two other regions located at the same latitude (eastern China-western Pacific and subtropical North Pacific). A simulation was carried out with the help of the I3RC (International Intercomparision of Three-Dimensional Radiation Code) Monte Carlo 3D radiative transfer community model. The results showed that DSSR increases as surface albedo increases. Moreover, the impact of surface albedo on DSSR is larger if the spatial distribution of clouds is more non-uniform. It is hoped that these results will contribute to the development of 3D radiative transfer models and the improvement of satellite inversion algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cahalan, R. F., and Coauthors, 2005: The I3RC: Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor. Soc., 86(9), 1275–1293.

    Article  Google Scholar 

  • Cong, Z. Y., S. C. Kang, A. Smirnov, and B. Holben, 2009: Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmos. Res., 92(1), 42–48.

    Article  Google Scholar 

  • Dubayah, R. C., and S. Loechel, 1997: Modeling topographic solar radiation using GOES data. J. Appl. Meteor., 36(2), 141–154.

    Article  Google Scholar 

  • Dubayah, R. C., and P. M. Rich, 1995: Topographic solar radiation models for GIS. Int. J. Geographical Inform. Syst., 9(4), 405–419.

    Article  Google Scholar 

  • Evans, K. F., and A. Marshak, 2005: Numerical methods. 3D Radiative Transfer in Cloudy Atmospheres. A. Marshak and A. B. Davis, Eds., Springer, Berlin, 261–274.

  • Geiger, M., L. Diabate, L. Menard, and L. Wald, 2002: A web service for controlling the quality of measurements of global solar irradiation. Solar Energy, 73(6), 475–480.

    Article  Google Scholar 

  • Gui, S., S. L. Liang, and L. Li, 2009: Validation of surface radiation data provided by the CERES over the Tibetan Plateau. 2009 17th International Conference on Geoinformatics, Fairfax, VA, 1–6.

    Google Scholar 

  • Gui, S., S. L. Liang, K. C. Wang, and L. Li, 2010: Assessment of three satellite-estimated land surface downwelling shortwave irradiance data Sets. IEEE Geosci. Remote Sens. Lett., 7(4), 776–780.

    Article  Google Scholar 

  • Gupta, S. K., D. P. Kratz, Jr. P. W. Stackhouse, and A. C. Wilber, 2001: The Langley parameterized shortwave algorithm (LPSA) for surface radiation budget studies (version1.0). NASA/TP-2001-211272.

    Google Scholar 

  • Hayasaka, T., K. Kawamoto, G. Shi, and A. Ohmura, 2006: Importance of aerosols in satellite-derived estimates of surface shortwave irradiance over China. Geophys. Res. Lett., 33, L06802, doi:10.1029/2005GL025093.

    Article  Google Scholar 

  • Helbig, N., H. Löwe, and M. Lehning, 2009: Radiosity approach for the surface radiation balance in complex terrain. J. Atmos. Sci., 66, 2900–2912.

    Article  Google Scholar 

  • Houborg, R., H. Soegaard, W. Emmerich, and S. Moran, 2007: Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data. Int. J. Remote Sens., 28(20), 4509–4535.

    Article  Google Scholar 

  • Huang, J. Y., 2004: Meteorological Statistical Analysis and Forecast Method. China Meteorological Press, Beijing, 298 pp. (in Chinese)

    Google Scholar 

  • Huo, J., and D. R. L ü, 2012: Cloud amount analysis at Yangbajing of Tibet in 2009–2010 using all-sky images. Climatic and Environmental Research, 17(4), 393–399. (in Chinese)

    Google Scholar 

  • Kang, S., S. Kim, and D. Lee, 2002: Spatial and temporal patterns of solar radiation based on topography and air temperature. Canadian Journal of Forest Research, 32(3), 487–497.

    Article  Google Scholar 

  • Kim, H. Y., and S. L. Liang, 2010: Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sens. Environ., 114, 2393–2402.

    Article  Google Scholar 

  • Kurosaki, Y., and F. Kimura, 2002: Relationship between topography and daytime cloud activity around Tibetan Plateau. J. Meteor. Soc. Japan, 80(6), 1139–1355.

    Article  Google Scholar 

  • Kuwagata, T., A. Numaguti, and N. Endo, 2001: Diurnal variation of water vapor over the central Tibetan Plateau during summer. J. Meteor. Soc. Japan, 79, 401–418.

    Article  Google Scholar 

  • Lee, W. L., K. N. Liou, and C. C. Wang, 2013: Impact of 3-D topography on surface radiation budget over the Tibetan Plateau. Theor. Appl. Climatol., 113, 95–103.

    Article  Google Scholar 

  • Li, Z., H. G. Leighton, K. Masuda, and T. Takashima, 1993: Estimation of SW flux absorbed at the surface from TOA reflected flux. J. Climate, 6(2), 317–330.

    Article  Google Scholar 

  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed., Academic Press, Boston, 583 pp.

    Google Scholar 

  • Liou, K. N., W. Lee, and A. Hall, 2007: Radiative transfer in mountains: Application to the Tibetan Plateau. Geophys. Res. Lett., 34, L23809, doi: 10.1029/2007GL031762.

    Article  Google Scholar 

  • Loeb, N. G., N. M. Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth’s radiant energy system instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240–265.

    Article  Google Scholar 

  • Ma, Y., and R. T. Pinker, 2012: Modeling shortwave radiative fluxes from satellites. J. Geophys. Res., 117, D23202, doi: 10.1029/2012JD018332.

    Article  Google Scholar 

  • Ma, Y., and Coauthors, 2005: Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area. Theor. Appl. Climatol., 80, 259–273.

    Article  Google Scholar 

  • Maddux, B., S. A. Ackeman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27(9), 1519–1528.

    Article  Google Scholar 

  • Manners, J., S. B. Vosper, N. Roberts, 2012: Radiative transfer over resolved topographic features for high-resolution weather prediction. Quart. J. Roy. Meteor. Soc., 138, 720–733.

    Article  Google Scholar 

  • Moeng, C.H., and Coauthors, 1996: Simulation of a stratocumulustopped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77(2), 261–278.

    Article  Google Scholar 

  • Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Datla, 2005: Satellite instrument calibration for measuring global climate change. Bull. Amer. Meteor. Soc., 86, 1303–1314.

    Article  Google Scholar 

  • Pincus, R., and K. F. Evans, 2009: Computational cost and accuracy in calculating three-dimensional radiative transfer: Results for new implementations of Monte Carlo and SHDOM. J. Atmos. Sci., 66, 3131–3146.

    Article  Google Scholar 

  • Qin, J., K. Yang, S. Liang, and W. Tang, 2012: Estimation of daily mean photosynthetically active radiation under All-Sky conditions based on relative sunshine data. J. Appl. Meteor. Climatol., 51, 150–160.

    Article  Google Scholar 

  • Ryu, Y., S. Kang, S. K. Moon, and J. Kim, 2008: Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agric. Forest. Meteorol., 148(10), 1538–1552.

    Article  Google Scholar 

  • Spencer, J. W., 1971: Fourier series representation of the position of the sun. Search, 2, 172.

    Google Scholar 

  • Stevens, B., and D. H. Lenschow, 2001: Observations, experiments, and large eddy simulation. Bull. Amer. Meteor. Soc., 82(2), 283–294.

    Article  Google Scholar 

  • Stöckli, R., 2013: The HelioMont Surface Solar Radiation Processing. Scientific Report MeteoSwiss, No. 93, 122 pp.

    Google Scholar 

  • Stroeve, J., J. E. Box, F. Gao, S. Liang, A. Nolin, and C. Schaaf, 2005: Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in suit measurements. Remote Sens. Environ., 94(1), 46–60.

    Article  Google Scholar 

  • Wang, K. C., X. J. Zhou, J. M. Liu, and M. Sparrow, 2005: Estimating surface solar radiation over complex terrain using moderate-resolution satellite sensor data. Int. J. Remote Sens., 26(1), 47–58.

    Article  Google Scholar 

  • Wang, L. D., D. R. Lü, and W. X. Zhang, 2013: Study on characteristic of solar radiation at Nam Co and Yangbajain in Qinghai-Xizang Plateau. Plateau Meteorology, 32(2), 315–326. (in Chinese)

    Google Scholar 

  • Wang, L. D., D. R. Lü, and J. Huo, 2014: Observation and simulation of abnormal transmittance over Yangbajing, Tibet. Atmospheric and Oceanic Sciences Letters, 7, 190–197, doi: 10.3878/j.issn.1674-2834.13.0086.

    Google Scholar 

  • Wang, S., R. F. Grant, D. L. Verseghy, and T. A. Blac, 2002: Modelling carbon dynamics of boreal forest ecosystems using the Canadian land surface scheme. Climatic Change, 55(4), 451–477.

    Article  Google Scholar 

  • Yang, K., T. Koike, P. Stackhouse, C. Mikovitz, and S. J. Cox, 2006: An assessment of satellite Surface radiation Products for highlands with Tibet instrumental data. Geophys. Res. Lett., 33, L22403, doi: 10.1029/2006GL027640.

    Article  Google Scholar 

  • Yang, K., R. T. Pinker, Y. M. Ma, T. Koike, M. M. Wonsick, S. J. Cox, Y. C. Zhang, and P. Stackhouse, 2008: Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau. J. Geophys. Res., 113, D17204, doi: 10.1029/2007JD009736.

    Article  Google Scholar 

  • Yang, K., J. He, W. J. Tang, J. Qin, and C. C. K. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. Forest. Meteor., 150(1), 38–46.

    Article  Google Scholar 

  • Zhang, Y. C., W. B. Rossow, and Jr. P. W. Stackhouse, 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi: 10.1029/2005JD006873.

    Article  Google Scholar 

  • Zhang, Y. C., W. B. Rossow, and Jr. P.W. Stackhouse, 2007: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112, D01102, doi: 10.1029/2005JD007008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daren Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lü, D. & He, Q. The impact of surface properties on downward surface shortwave radiation over the Tibetan Plateau. Adv. Atmos. Sci. 32, 759–771 (2015). https://doi.org/10.1007/s00376-014-4131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4131-2

Key words

Navigation