Skip to main content
Log in

Processes leading to second-year cooling of the 2010–12 La Niña event, diagnosed using GODAS

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Niña event. In 2010–12, a horseshoe-like pattern was seen, connecting negative temperature anomalies off and on the Equator, with a dominant influence from the South Pacific. During the 2010 La Niña event, warm waters piled up at subsurface depths in the western tropical Pacific. Beginning in early 2011, these warm subsurface anomalies propagated along the Equator toward the eastern basin, acting to reverse the sign of sea surface temperature (SST) anomalies (SSTAs) there and initiate a warm SSTA. However, throughout early 2011, pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific. As isopycnal surfaces outcropped in the central equatorial Pacific, negative anomalies from the subsurface spread upward along with mean circulation pathways, naturally initializing a cold SSTA. In the summer, a cold SSTA reappeared in the central basin, which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific. These SSTAs acted to initiate local coupled air-sea interactions, generating atmospheric-oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011. However, the cooling tendency in mid-2012 did not develop into another La Niña event, since the cold anomalies in the South Pacific were not strong enough. An analysis of the 2007–09 La Niña event revealed similar processes to the 2010–12 La Niña event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere-ocean system: Influence of the basis state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712.

    Article  Google Scholar 

  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2. 3. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.]

    Google Scholar 

  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 1085–1087.

    Article  Google Scholar 

  • Chang, P., B. S. Giese, L. Ji, H. F. Seidel, and F. Wang, 2001: Decadal change in the South Tropical Pacific in a global assimilation analysis. Geophys. Res. Lett., 28, 3461–3464.

    Article  Google Scholar 

  • Choi, J., S. I. An., S. W. Yeh, and J. Y. Yu, 2013: ENSOlike and ENSO-induced tropical Pacific decadal variability in CGCMs. J. Climate, 26, 1485–1501.

    Article  Google Scholar 

  • Cox, M. D., and K. Bryan, 1984: A numerical model of the ventilated thermocline, J. Phys. Oceanogr., 14, 674–687.

    Article  Google Scholar 

  • Hu, Z. -Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niña followed by another La Niña? Climate Dyn., 42, 1029–1042, doi: 10.1007/s00382-013-1917-3.

    Article  Google Scholar 

  • Jin, F. -F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–471.

    Article  Google Scholar 

  • Luo, J.-J., S. Masson, S. K. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific Origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30(24), 2250, doi: 10.1029/2003GL018649.

    Article  Google Scholar 

  • Luo, Y. -Y., L. M. Rothstein, R.-H. Zhang, and A. J. Busalacchi, 2005: On the connection between South Pacific subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model. J. Geophys. Res., 110, C10002, doi: 10.1029/2004JC002655.

    Article  Google Scholar 

  • McCreary, J. P. Jr., and D. L. T. Anderson, 1984: A simple model of El Niño and the Southern Oscillation. Mon. Wea. Rev., 112, 934–946.

    Article  Google Scholar 

  • Philander, S. G. H, 1992: Ocean-atmosphere interactions in the tropics: A review of recent theories and models. J. Appl. Meteoro., 31, 938–945.

    Article  Google Scholar 

  • Wang, X., C. Y. Li, and W. Zhou, 2007: Interdecadal mode and its propagating characteristics of SSTA in the South Pacific. Meteor. Atmos. Phys., 98, 115–124, doi: 10.1007/s00703-006-0235-2.

    Article  Google Scholar 

  • Wang, X., C. Z. Wang, W. Zhou, D. X. Wang, and J. Song, 2011: Teleconnected influence of North Atlantic sea surface temperature on the El Niño onset. Climate Dyn., 37, 663–676, doi: 10.1007/s00382-010-0833-z.

    Article  Google Scholar 

  • Wang, X., C. Z. Wang, W. Zhou, L. Liu, and D. X. Wang, 2013: Remote influence of North Atlantic SST on the equatorial westerly wind anomalies in the western Pacific for initiating an El Niño event: An Atmospheric General Circulation Model Study. Atmos. Sci. Lett., 14, 107–111.

    Article  Google Scholar 

  • Yu, Z.-J., P. S. Schopf, and J. P. McCreary Jr., 1997: On the annual cycle of upper-ocean circulation in the eastern equatorial Pacific. J. Phys. Oceanogr., 27 309–324.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

  • Zhang, R.-H., and A. J. Busalacchi, 1999: A possible link between off-equatorial warm anomalies propagating along the NECC path and the onset of the 1997–98 El Niño. Geophys. Res. Lett., 26(18), 2873–2876.

    Article  Google Scholar 

  • Zhang, R. -H., and L. M. Rothstein, 2000: Role of off-equatorial subsurface anomalies in initiating the 1991–1992 El Niño as revealed by the National Centers for Environmental Prediction ocean reanalysis data. J. Geophys. Res., 105(C3), 6327–6339.

    Article  Google Scholar 

  • Zhang, R.-H., L. M. Rothstein, A. J. Busalacchi, and X. Z. Liang, 1999: The onset of the 1991–92 El Niño event in the tropical Pacific Ocean: The NECC subsurface pathway. Geophys. Res. Lett., 26(7), 847–850.

    Article  Google Scholar 

  • Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30(19), doi: 10.1029/2003GL018010.

    Google Scholar 

  • Zhang, R. -H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Nino forecast using an improved intermediate coupled model. Mon. Wea. Rev., 133, 2777–2802.

    Article  Google Scholar 

  • Zhang, R. -H., F. Zheng, J. Zhu, and Z. G. Wang, 2013: A successful real-time forecast of the 2010–11 La Niña event. Sci. Rep., 3, 1108, doi: 10.1038/srep01108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Zhang, RH., Wang, Z. et al. Processes leading to second-year cooling of the 2010–12 La Niña event, diagnosed using GODAS. Adv. Atmos. Sci. 32, 424–438 (2015). https://doi.org/10.1007/s00376-014-4012-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4012-8

Key words

Navigation