Skip to main content
Log in

Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Atmospheric Intercomparison Project simulations of the summertime diurnal cycle of precipitation and low-level winds over subtropical China by Intergovernmental Panel on Climate Change Fifth Assessment Report models were evaluated. By analyzing the diurnal variation of convective and stratiform components, results confirmed that major biases in rainfall diurnal cycles over subtropical China are due to convection parameterization and further pointed to the diurnal variation of convective rainfall being closely related to the closure of the convective scheme. All models captured the early-morning peak of total rainfall over the East China Sea, but most models had problems in simulating diurnal rainfall variations over land areas of subtropical China. When total rainfall was divided into stratiform and convective rainfall, all models successfully simulated the diurnal variation of stratiform rainfall with a maximum in the early morning. The models, overestimating noon-time (nocturnal) total rainfall over land, generally simulated too much convective rainfall, which peaked close to noon (midnight), sharing some similarities in the closures of their deep convection schemes. The better performance of the Meteorological Research Institute atmosphere-ocean coupled global climate model version 3 (MRI-CGCM3) is attributed to the well captured ratio of the two kinds of rainfall, but not diurnal variations of the two components. Therefore, a proper ratio of convective and stratiform rainfall to total rainfall is also important to improve simulated diurnal rainfall variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641–4673.

    Article  Google Scholar 

  • Arakawa, O., and A. Kitoh, 2005: Rainfall diurnal variation over the Indonesian maritime continent simulated by 20 km-mesh GCM. SOLA, 1, 109–112.

    Article  Google Scholar 

  • Bellouin, N., O. Boucher, J. Haywood, C. Johnson, A. Jones, J. Rae, and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Meteorological Office Hadley Centre Technical Note, 73, 42pp.

  • Betts, A. K., 1986: A new convective adjustment scheme 1: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.

    Google Scholar 

  • Betts, A. K., and C. Jakob, 2002: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107(D23), 4732, doi: 10.1029/2002JD002264.

    Article  Google Scholar 

  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme 2: Single column tests using Gate Wave, Bomex, Atex and Arctic Air-Mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.

    Google Scholar 

  • Boyle, J., and S. A. Klein, 2010: Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res., 115, D23113, doi: 10.1029/2010JD014262.

    Article  Google Scholar 

  • Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109, D17105, doi:10.1029/2004JD004818.

    Article  Google Scholar 

  • Collins, W. J., and Coauthors, 2008: Evaluation of the HadGEM2 model. Meteorological Office Hadley Centre Technical Note, 74, 46pp.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the community climate system model. J. Climate, 17, 930–951.

    Article  Google Scholar 

  • Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003: High-resolution simulations of global climate, part 1: Present climate. Climate Dyn., 21, 371–390.

    Article  Google Scholar 

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–55.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorology, 8, 38–55.

    Article  Google Scholar 

  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 2038–2052.

    Article  Google Scholar 

  • Kummerow, C., and Coauthors, 2001: The evolution of the goddard profiling algorithm (GPROF) for Rainfall Estimation from passive microwave sensors. J. Appl. Meteoro., 40, 1801–1820.

    Article  Google Scholar 

  • Lee, M. I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and Northern Mexico. J. Climate, 20, 1862–1881.

    Article  Google Scholar 

  • Li, J., R. Yu, and T. Zhou, 2008: Seasonal variation of the diurnal cycle of rainfall in southern contiguous China. J. Climate, 21, 6036–6043.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci. 30, 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 4159–4179.

    Article  Google Scholar 

  • Maidens, A., and S. Derbyshire, 2006: Improving mass flux profiles in the Gregory-Rowntree convection scheme using adaptive detrainment. Quart. J. Roy. Meteor. Soc., 128, 2108–2121.

    Google Scholar 

  • Mizuta, R., and Coauthors, 2012: Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. J. Meteor. Soc. Japan, 90A, 233–258.

    Article  Google Scholar 

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert—A parameterization of moist convection for general-circulation models. Mon. Wea. Rev., 120, 978–1002.

    Article  Google Scholar 

  • Ploshay, J. J., and N. C. Lau, 2010: Simulation of the diurnal cycle in tropical rainfall and circulation during boreal summer with a high-resolution GCM. Mon. Wea. Rev., 138, 3434–3453.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.

    Article  Google Scholar 

  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Q. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 4809–4826.

    Article  Google Scholar 

  • Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, and B. Imam, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15, 983–1001.

    Article  Google Scholar 

  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883–901.

    Google Scholar 

  • Volodin, E., N. Dianskii, and A. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmospheric and Oceanic Physics, 46, 414–431.

    Article  Google Scholar 

  • Wang, F., R. Yu, H. Chen, J. Li and W. Yuan, 2011: The characteristics of rainfall diurnal variation over the Southwestern China. Torrential Rain and Disasters, 30, 117–121. (in Chinese)

    Google Scholar 

  • Wu, T., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725–744.

    Article  Google Scholar 

  • Wu, T., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res., 118, 4326–4347, doi:10.1002/jgrd.50320.

    Article  Google Scholar 

  • Xie, S., and M. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res., 105, 14983–14996.

    Article  Google Scholar 

  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784–801.

    Article  Google Scholar 

  • Yu, R., T. Zhou, A. Xiong, Y. Zhu, and J. Li, 2007a: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi: 10.1029/2006GL028129.

    Article  Google Scholar 

  • Yu, R., Y. Xu, T. Zhou, and J. Li, 2007b: Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett., 34, L13703, doi: 10.1029/2007GL030315.

    Article  Google Scholar 

  • Yu, R., J. Li, W. Yuan, and H. Chen, 2010: Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data. J. Climate, 23, 3390–3396.

    Article  Google Scholar 

  • Yuan, W., J. Li, H. Chen, and R. Yu, 2012a: Intercomparison of summer rainfall diurnal features between station rain gauge data and TRMM 3B42 product over central eastern China. Int. J. Climatol., 32, 1690–1696.

    Article  Google Scholar 

  • Yuan, W., R. Yu, M. Zhang, W. Lin, H. Chen, and J. Li, 2012b: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 3307–3320.

    Article  Google Scholar 

  • Yuan, W., R. Yu, M. Zhang, W. Lin, J. Li, and Y. Fu, 2013: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J. Climate, 26, 3159–3172.

    Article  Google Scholar 

  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute-Earth System Model v1 (MRIESM1): Model description. Tech. Rep. of the Meteorological Research Institute, No. 64, 8–37.

    Google Scholar 

  • Zhang, G., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, D14, 4220, doi: 10.1029/2001JD001005.

    Google Scholar 

  • Zhang, G. J., 2003: Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the US southern great plains. Geophys. Res. Lett., 30, 2281, doi:10.1029/2003GL018554.

    Article  Google Scholar 

  • Zhang, G. J., and M. Q. Mu, 2005: Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. J. Climate, 18, 4046–4064.

    Article  Google Scholar 

  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: a comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Yuan  (原韦华).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, W. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci. 30, 1679–1694 (2013). https://doi.org/10.1007/s00376-013-2250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2250-9

Key words

Navigation