Skip to main content

Advertisement

Log in

Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Compatible rhizobia strains are essential for nodulation and biological nitrogen fixation (BNF) of hairy vetch (Vicia villosa Roth, HV). We evaluated how past HV cultivation affected nodulation and BNF across host genotypes. Five groups of similar HV genotypes were inoculated with soil dilutions from six paired fields, three with 10-year HV cultivation history (HV+) and three with no history (HV−), and used to determine efficiency of rhizobia nodulation and BNF. Nodulation was equated to nodule number and mass, BNF to plant N and Rhizobium leguminosarum biovar viceae (Rlv) soil cell counts using qPCR to generate an amplicon of targeted Rlv nodD genes. Both HV cultivation history and genotype affected BNF parameters. Plants inoculated with HV+ soil dilutions averaged 60 and 70 % greater nodule number and mass, respectively. Such plants also had greater biomass and tissue N than those inoculated with HV− soil. Plant biomass and tissue N were strongly correlated to nodule mass (r 2 = 0.80 and 0.50, respectively), while correlations to nodule number were low (r 2 = 0.50 and 0.31, respectively). Although hairy vetch rhizobia occur naturally in soils, past cultivation of HV was shown in this study to enhance nodulation gene-carrying Rlv population size and/or efficiency of rhizobia capable of nodulation and N fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abi-Ghanem R, Carpenter-Boggs L, Smith JL (2011) Cultivar effects on nitrogen fixation in peas and lentils. Biol Fertil Soils 47:115–120. doi:10.1007/s00374-010-0492-6

    Article  Google Scholar 

  • Alvarez-Martinez ER, Valverde A, Helena Ramirez-Bahena M, Garcia-Fraile P, Tejedor C, Mateos PF, Santillana N, Zuniga D, Peix A, Velazquez E (2009) The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds. Arch Microbiol 191:659–668. doi:10.1007/s00203-009-0495-6

    Article  PubMed  CAS  Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002a) The diversity of phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68:4025–4034. doi:10.1128/AEM.68.8.4025-4034.2002

    Article  PubMed  CAS  Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002b) Effects of liming and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian Oxisol. Soil Biol Biochem 34:477–485. doi:10.1016/S0038-0717(01)00206-1

    Article  CAS  Google Scholar 

  • Anugroho F, Kitou M, Nagumo F, Kinjo K, Tokashiki Y (2009) Growth, nitrogen fixation, and nutrient uptake of hairy vetch as a cover crop in a subtropical region. Weed Biol Manag 9:63–71. doi:10.1111/j.1445-6664.2008.00319.x

    Article  CAS  Google Scholar 

  • Bala A, Murphy P, Giller KE (2001) Genetic diversity of rhizobia from natural populations varies with the soil dilution sampled. Soil Biol Biochem 33:841–843

    Article  CAS  Google Scholar 

  • Ballard RA, Charman A (2000) Nodulation and growth of pasture legumes with naturalised soil rhizobia. 1. Annual Medicago spp. Aust J Exp Agric 40:939–948

    Article  Google Scholar 

  • Ballard RA, Craig AD, Charman N (2002) Nodulation and growth of pasture legumes with naturalised soil rhizobia. 2. Balansa clover (Trifolium michelianum Savi). Aust J Exp Agric 42:939–944

    Article  Google Scholar 

  • Ballard RA, Charman N, McInnes A, Davidson JA (2004) Size, symbiotic effectiveness and genetic diversity of field pea rhizobia (Rhizobium leguminosarum bv. viciae) populations in South Australian soils. Soil Biol Biochem 36:1347–1355. doi:10.1016/j.soilbio.2004.04.016

    Article  CAS  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–744. doi:10.1007/s00374-011-0605-x

    Article  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    PubMed  CAS  Google Scholar 

  • Campiglia E, Caporali F, Radicetti E, Mancinelli R (2010) Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur J Agron 33:94–102. doi:10.1016/j.eja.2010.04.001

    Article  Google Scholar 

  • Chemining'wa GN, Vessey JK (2006) The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biol Biochem 38:294–302. doi:10.1016/j.soilbio.2005.05.007

    Article  Google Scholar 

  • Denton MD, Coventry DR, Murphy PJ, Howieson JG, Bellotti WD (2002) Competition between inoculant and naturalized Rhizobium leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Aust J Agric Res 53:1019–1026. doi:10.1071/AR01138

    Article  CAS  Google Scholar 

  • Drew EA, Ballard RA (2010) Improving N-2 fixation from the plant down: compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance. Plant Soil 327:261–277. doi:10.1007/s11104-009-0052-8

    Article  CAS  Google Scholar 

  • Duodu S, Bhuvaneswari TV, Gudmundsson J, Svenning MM (2005) Symbiotic and saprophytic survival of three unmarked Rhizobium leguminosarum biovar trifolii strains introduced into the field. Environ Microbiol 7:1049–1058. doi:10.1111/j.1462-2920.2005.00789.x

    Article  PubMed  CAS  Google Scholar 

  • Evans L, Lewin K, Vella F (1980) Effect of nutrient medium pH on symbiotic nitrogen-fixation by Rhizobium-leguminosarum and Pisum-sativum. Plant Soil 56:71–80. doi:10.1007/BF02197954

    Article  CAS  Google Scholar 

  • Evans J, Wallace C, Dobrowolski N, Pritchard I, Sullivan B (1993) Requirement of field pea for inoculation with rhizobium and lime pelleting in soils of Western-Australia. Aust J Exp Agric 33:767–773

    Article  Google Scholar 

  • Fettell NA, OConnor GE, Carpenter DJ, Evans J, Bamforth I, OtiBoateng C, Hebb DM, Brockwell J (1997) Nodulation studies on legumes exotic to Australia: the influence of soil populations and inocula of Rhizobium leguminosarum bv viciae on nodulation and nitrogen fixation by field peas. Appl Soil Ecol 5:197–210

    Article  Google Scholar 

  • Howieson JG, Yates RJ, O'Hara GW, Ryder M, Real D (2005) The interactions of Rhizobium leguminosarum biovar trifolii in nodulation of annual and perennial Trifolium spp. from diverse centres of origin. Aust J Exp Agric 45:199–207. doi:10.1071/EA03167

    Article  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N-2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Article  Google Scholar 

  • Ibekwe A, Angle J, Chaney R, vanBerkum P (1997) Enumeration and N-2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agric Ecosyst Environ 61:103–111. doi:10.1016/S0167-8809(96)01106-1

    Article  CAS  Google Scholar 

  • Kitou M, Jayasinghe GY, Nagumo F, Anugroho F, Kinjo K (2010) Potential growth of hairy vetch as a winter legume cover crops in subtropical soil conditions. Soil Sci Plant Nutr 56:254–262. doi:10.1111/j.1747-0765.2010.00445.x

    Article  Google Scholar 

  • Kuo S, Sainju UM (1998) Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil. Biol Fertil Soils 26:346–353

    Article  CAS  Google Scholar 

  • Laguerre G, Courde L, Nouaim R, Lamy I, Revellin C, Breuil MC, Chaussod R (2006) Response of rhizobial populations to moderate copper stress applied to an agricultural soil. Microb Ecol 52:426–435. doi:10.1007/s00248-006-9081-5

    Article  PubMed  CAS  Google Scholar 

  • Lapinskas EB (2007) The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils. Eurasian Soil Sci 40:419–425. doi:10.1134/S1064229307040084

    Article  Google Scholar 

  • Lu YC, Watkins KB, Teasdale JR, Abdul-Baki AA (2000) Cover crops in sustainable food production. Food Rev Int 16:121–157

    Article  Google Scholar 

  • Macdonald CA, Clark IM, Hirsch PR, Zhao F, McGrath SP (2011) Development of a real-time PCR assay for detection and quantification of Rhizobium leguminosarum bacteria and discrimination between different biovars in zinc-contaminated soil. Appl Environ Microbiol 77:4626–4633. doi:10.1128/AEM.02232-10

    Article  PubMed  CAS  Google Scholar 

  • Maul J, Mirsky S, Emche S, Devine T (2011) Evaluating a germplasm collection of the cover crop hairy vetch for use in sustainable farming systems. Crop Sci 51:2615–2625. doi:10.2135/cropsci2010.09.0561

    Article  Google Scholar 

  • Meade J, Higgins P, O'gara F (1985) Studies on the inoculation and competitiveness of a Rhizobium leguminosarum strain in soils containing indigenous rhizobia. Appl Environ Microbiol 49:899–903

    PubMed  CAS  Google Scholar 

  • Mothapo NV, Grossman JM, Maul JE, Shi W, Isleib T (2013) Genetic diversity of resident soil rhizobia isolated from nodules of distinct hairy vetch (Vicia villosa Roth) genotypes. Appl Soil Ecol 64:201–213

    Article  Google Scholar 

  • Parr M, Grossman JM, Reberg-Horton SC, Brinton C, Crozier C (2011) Nitrogen delivery from legume cover crops in no-till organic corn production. Agron J 103:1578–1590. doi:10.2134/agronj2011.0007

    Article  Google Scholar 

  • Patrick HN, Lowther WL (1995) Influence of the number of rhizobia on the nodulation and establishment of Trifolium-ambiguum. Soil Biol Biochem 27:717–720

    Article  CAS  Google Scholar 

  • Power JF, Doran JW, Koerner PT (1991) Hairy vetch as a winter cover crop for dryland corn production. J Prod Agric 4:62–67

    Article  Google Scholar 

  • Sprent JI, Stephens JH, Rupela OP (1988) Environmental effects on nitrogen fixation. In: Voisin A, Munier-Jolain NG, Salon C (2010) The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil. 337:399–412. doi: 10.1007/s11104-010-0536-6.

    Google Scholar 

  • Teasdale JR, AbdulBaki AA (1997) Growth analysis of tomatoes in black polyethylene and hairy vetch production systems. HortSci 32:659–663

    Google Scholar 

  • Thies JE, Singleton PW, Benbohlool B (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28

    PubMed  CAS  Google Scholar 

  • Tlusty B, Grossman JM, Graham PH (2004) Selection of rhizobia for prairie legumes used in restoration and reconstruction programs in Minnesota. Can J Microbiol 50:977–983. doi:10.1139/W04-084

    Article  PubMed  CAS  Google Scholar 

  • Toro N (1996) Nodulation competitiveness in the Rhizobium legume symbiosis. World J Microbiol Biotechnol 12:157–162

    Article  Google Scholar 

  • Undersander DJ, Ehlke NJ, Kaminski AR, Doll JD, Kelling KA (1990) Hairy vetch. Alternative Field Crops Manual. University of Wisconsin-Madison and University of Minnesota. http://www.hort.purdue.edu/newcrop/afcm/vetch.html

  • Unkovich MJ, Pate JS, Sanford P (1997) Nitrogen fixation by annual legumes in Australian Mediterranean agriculture. Aust J Agric Res 48:267–293

    Article  Google Scholar 

  • Utomo M, Frye WW, Blevins RL (1990) Sustaining soil-nitrogen for corn using hairy vetch cover crop. Agron J 82:979–983

    Article  CAS  Google Scholar 

  • Voisin A, Munier-Jolain NG, Salon C (2010) The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil 337:399–412. doi:10.1007/s11104-010-0536-6

    Article  CAS  Google Scholar 

  • Wagger MG (1989) Cover crop management and nitrogen rate in relation to growth and yield of no-till corn. Agron J 81:533–538

    Article  Google Scholar 

  • Young J, Crossman L, Johnston A, Thomson N, Ghazoui Z, Hull K, Wexler M, Curson A, Todd J, Poole P, Mauchline T, East A, Quail M, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by a Fulbright Grant to graduate student Nape Mothapo. Thanks to farmers, Alex Hitt, Ken Dawson, Michael Fortune, Michael Porterfield, and Stephan Hartman, for making their fields available for the project and sharing their farm management information. The authors acknowledge Dr. Peter Young for providing standard rhizobia strains, Dr. Consuelo Arellano for assisting with statistical analyses, and Drs. Chris Reberg-Horton and Daniel Israel for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Grossman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mothapo, N.V., Grossman, J.M., Sooksa-nguan, T. et al. Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia. Biol Fertil Soils 49, 871–879 (2013). https://doi.org/10.1007/s00374-013-0781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0781-y

Keywords

Navigation