Skip to main content
Log in

Morphology and general characteristics of phages specific to Lens culinaris rhizobia

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Four lytic phages, namely LRP-1, LRP-4, LRP-13, and LRP-15, active against indigenous rhizobial strains of Lens culinaris were isolated and characterized for their individual morphology, host range, plaque characteristics, lytic behavior, and restriction endonuclease profiling of phage DNA. All phages had a typical polyhedral head and long non-contractile tail, representing the bacteriophage family close to Siphoviridae. Phages produced distinct types of plaques on their indicator bacterial strains. The host range of the phage isolates was restricted to Rhizobium leguminosarum biovars and no cross infectivity among susceptible strains was observed. A study on the lytic cycle of the phages under identical conditions exhibited distinct latent period and burst size. Inactivation pattern of phages with temperature and UV light was quite distinct. Phage LRP-1 showed higher thermal resistance, though greater sensitivity to UV light, as compared to other phages. Genome sizes of the phages were estimated to vary between 50–72 kbp. The 16S rRNA sequence analysis of the phage indicator rhizobial strains revealed 81% to 100% similarity with R. leguminosarum bv. viciae. The phages could thus prove to be considerably useful in typing and investigating into the genetic variability which might exist amongst the soil rhizobia nodulating Lens culinaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abebe HM, Sadowsky MJ, Kinkile BK, Schmidt EL (1992) Lysogeny in Bradyrhizobium japonicum and its effect on soybean nodulation. Appl Environ Microbiol 58:3360–3366

    CAS  PubMed  Google Scholar 

  • Adams MH (1959) Bacteriophages. Wiley (Interscience), New York

    Google Scholar 

  • Ahmad MH, Morgan V (1994) Characterization of cowpea (Vigna ungiculata) rhizobiophages and its effect on cowpea nodulation and growth. Biol Fertil Soils 18:297–301

    Article  Google Scholar 

  • Ali FS, Loynachan TE, Hammad AMM, Aharchi Y (1998) Polyvirulent rhizobiophages from a soybean rhizosphere soil. Soil Biol Biochem 30:2171–2175

    Article  CAS  Google Scholar 

  • Appunu C, Dhar B (2006) Phage typing of indigenous soybean-rhizobia and relationship of a phage group strains for their asymbiotic and symbiotic nitrogen fixation. Ind J Exp Biol 44:1006–1011

    CAS  Google Scholar 

  • Appunu C, Dhar B (2008) Morphology and general characteristics of lytic phages infective on strains of Bradyrhizobium japonicum. Curr Microbiol 56:21–27

    Article  CAS  PubMed  Google Scholar 

  • Barnet YM (1972) Bacteriophages of Rhizobium trifolii I morphology and host range. J Gen Virol 15:1–5

    Article  CAS  PubMed  Google Scholar 

  • Barnet YM (1980) The effect of rhizobiophages on population of Rhizobium trifolii in the root zone of clover plants. Can J Microbiol 26:572–576

    Article  CAS  PubMed  Google Scholar 

  • Begum AA, Leibovitch L, Minger P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Brown JCS, Ward LJH, Davey GP (1994) Rapid isolation and purification of lactococcal bacteriophage DNA without the use of caesium chloride gradients. Lett Appl Microbiol 18:292–293

    Article  CAS  PubMed  Google Scholar 

  • De Lajudie P, Bogusz D (1984) Isolation and characterization of two bacteriophages of a stem nodulating Rhizobium strains from Sesbania rostrata. Can J Microbiol 30:521–525

    Article  Google Scholar 

  • Dhar B, Ramkrishna K (1987) Morphology and general characteristics of phages of chickpea rhizobia. Arch Microbiol 147:121–125

    Article  Google Scholar 

  • Dhar B, Singh BD, Singh RB, Singh RM, Singh VP, Srivastava JS (1978) Isolation and characterization of a virus (RL-1) infective on Rhizobium leguminosarusm. Arch Microbiol 119:263–267

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research (2nd ed) An International Rice Research Institute Book. A Wiley-Interscience Publication, New York

    Google Scholar 

  • Hashem FM, Angle JS, Ristiano PA (1986) Isolation and characterization of rizobiophage specific for Rhizobium japonicum USDA 117. Can J Microbiol 32:326–329

    Article  CAS  Google Scholar 

  • Hashem FM, Angle JS (1990) Rhizobiophage effects on nodulation, nitrogen fixation, yield of field grown soybeans (Glucin max L Merr). Biol Fertil Soils 9:330–334

    Article  Google Scholar 

  • Kakilia J, Lindstrom K (1993) Host range, morphology and DNA restriction patterns of bacteriophage isolates infecting Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 26:429–437

    Google Scholar 

  • Kowalski M (1966) Lysogeny in Rhizobium meliloti. Acta Micobial Pol 15:119–128

    CAS  Google Scholar 

  • Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Amarger N (1996) Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036

    CAS  PubMed  Google Scholar 

  • Lesley SM (1982) A bacteriophages typing system for Rhizobium meliloti. Can J Microbiol 28:180–189

    Article  Google Scholar 

  • Lindstrom K, Lehtomaki S (1988) Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast growing rhizobia. FEMS Microbiol Lett 50:277–287

    Article  Google Scholar 

  • Lindstrom EK, Jarvis BDW, Lindstrom PE, Patel JJ (1983) DNA homology, phage typing and cross-nodulation studies of rhizobia infecting Galegae species. Can J Microbiol 29:781–789

    Article  Google Scholar 

  • Malek W, Wdowiak-Wrobel S, Bartosik M, Konopa G, Narajczyk M (2009) Characterization of phage virulent for Robinia pseudoacacia rhizobia. Curr Microbiol 59:187–192

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular clonning. Cold Spring Harbor Laboratory, Cold Spring Horbor, New York

    Google Scholar 

  • McNeil DL, Materne M (2007) Rhizobium management and nitrogen fixation. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, The Netherlands

    Google Scholar 

  • Mendum TA, Clark IM, Hirsch PR (2001) Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically-modified rhizobia. Antonie Leeuwenhoek 79:189–197

    Article  CAS  PubMed  Google Scholar 

  • Moseley BEB (1983) Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. Photochem Photobiol Rev 7:223–274

    CAS  Google Scholar 

  • Patel JJ (1976) Morphology and host range of virulent phages of Lotus rhizobia. Can J Microbiol 23:204–212

    Article  Google Scholar 

  • Sharma RS, Mohmad A, Babu CR (2002) Diversity among rhizobiophages from rhizospheres of legumes inhabiting three ecogeographical regions of India. Soil Biol Biochem 34:965–973

    Article  CAS  Google Scholar 

  • Singh RB, Dhar B, Singh BD (1980) Morphology and general characteristics of viruses active against cowpea Rhizobium CB 756 and 32 HI. Arch Virol 64:17–24

    Article  CAS  PubMed  Google Scholar 

  • Smit G, Swart S, Lugtenberg BJJ, Kijne JW (1992) Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol 6:2897–2903

    Article  CAS  PubMed  Google Scholar 

  • Staniewski R (1987) Morphology and general characteristics of phages active against Rhizobium. J Basic Microbiol 27:155–165

    Article  Google Scholar 

  • Swinton D, Hattman S, Benzinger R, Buchanan-Wollaston V, Beringer J (1984) Replacement of the deoxycytidine residues in Rhizobium bacteriophage RL38JI DNA. FEMS Microbiol Lett 184:294–298

    Google Scholar 

  • Thurman NP, Bromfield ESP (1988) Effect of variation within and between Medicago and Melilotus species on the composition and dynamics of indigenous populations of Rhizobium meliloti. Soil Biol Biochem 20:31–38

    Article  Google Scholar 

  • Uchiumi T, Ono Y, Abe M, Higashi S (1989) Phage induction of lysogenic Rhizobium leguminosarum bv. trifolii in broth the free living and symbiotic forms. J Gen Microbiol 135:3133–3141

    CAS  Google Scholar 

  • Vincent JM (1970) A Manual for the practical study of root nodule bacteria, IBP Handbook No. 15. Blackwell Scientific Publication, Oxford and Edinburgh

    Google Scholar 

  • Wang G, Murase J, Asakawa S, Kimura M (2010) Unique viral capsid assembly protein gene (g20) of cynophages in the floodwater of a Japanese paddy field. Biol Fertil Soils 46:93–102

    Article  CAS  Google Scholar 

  • Werquin M, Ackermann HW, Leveque RC (1988) A study of 33 bacteriophages of Rhizobium meliloti. Appl Environ Microbiol 1:188–196

    Google Scholar 

Download references

Acknowledgment

We thank Prof. A. Vaishampayan for help in discussion and suggestions in the manuscript. The financial assistance from Department of Biotechnology, New Delhi is sincerely acknowledged. We are also grateful to the Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi for the determination by electron microscopy of phages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Jaiswal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaiswal, S.K., Dhar, B. Morphology and general characteristics of phages specific to Lens culinaris rhizobia. Biol Fertil Soils 46, 681–687 (2010). https://doi.org/10.1007/s00374-010-0474-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0474-8

Keywords

Navigation