Skip to main content
Log in

Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The aim of the study presented here is to determine the impact of short- and medium-term transformations (0–3 years) of the soil organic matter (SOM) on the major processes and parameters that enable or inhibit selenite, Se(+IV), transfers between the soil components (solid, liquid or gaseous). Three types of soil of similar mineralogical origin but containing diverse quantities and qualities of SOM were first contaminated with Se(+IV) and incubated at 28°C. Soils were sampled throughout the incubation period to characterise the mobility of Se (batch and soil column experiments) and also its fractionation within the soil compartments (selective extractions and size-density fractionation). The following are the main results obtained within the first month of incubation. (a) Selenium was partly volatilized during soil incubation (<0.1%), (b) Se extracted with CaCl2 (5×10−4 M) was equally small for the three soil samples (∼1–5%), suggesting that Se was strongly sorbed on the solid phase and (c) at least 10% of Se was associated to the particulate organic matter \({\left( {{\text{POM}}_{{ > {\text{50}}\mu {\text{m}}}} } \right)},\)whereas 60% of Se was extracted with soil humic substances. These results suggested that both SOM quantity and quality played a significant role in selenium retention. Furthermore, comparison between experimental and predicted variations of CO2 fluxes (due to C mineralisation) and soil biomasses are presented. By this way, we estimated the capacity of the RothC model as an experimental gauging tool in the prediction of C turnover on a laboratory scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams MM, Burau RG, Zasoski RJ (1990) Organic selenium distribution in selected California soils. Soil Sci Soc Am J 54(4):979–982

    Article  CAS  Google Scholar 

  • Balesdent J, Pétraud JP, Feller C (1991) Effets des ultrasons sur la distribution granulométrique des matières organiques des sols. Sci Sol 29(2):95–106

    Google Scholar 

  • Balistrieri LS, Chao TT (1987) Selenium adsorption by goethite. Soil Sci Soc Am J 51(5):1145–1151

    Article  CAS  Google Scholar 

  • Bar-Yosef B, Meek D (1987) Selenium sorption by kaolinite and montmorillonite. Soil Sci 144(1):11–19

    CAS  Google Scholar 

  • Bruggeman C, Maes A, Vancluysen J, Vandemussele P (2005) Selenite reduction in Boom clay: effect of FeS2, clay minerals and dissolved organic matter. Environ Pollut 137(2):209–221

    Article  PubMed  CAS  Google Scholar 

  • Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103(1):1–25

    Article  PubMed  CAS  Google Scholar 

  • Chirenje T, Rivero C, Ma LQ (2002) Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid. Geoderma 108(1–2):31–47

    Article  CAS  Google Scholar 

  • Duc M, Lefevre G, Fedoroff M, Jeanjean J, Rouchaud JC, Monteil-Rivera F, Dumonceau J, Milonjic S (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioactiv 70(1–2):61–72

    Article  CAS  Google Scholar 

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144:141–152

    CAS  Google Scholar 

  • Falloon P, Smith P, Coleman K, Marshall S (1998) Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol Biochem 30(8–9):1207–1211

    Article  CAS  Google Scholar 

  • Février L, Martin-Garin A (2005) Biogeochemical behaviour of anionic radionuclides in soil: evidence for biotic interactions. Radioprotection 40(Suppl.1):S79–S86

    Google Scholar 

  • Gustafsson JP, Johnsson L (1994) The association between selenium and humic substances in forested ecosystems—laboratory evidence. Appl Organomet Chem 8(2):141–147

    Article  CAS  Google Scholar 

  • Jackson BP, Miller WP (2000) Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci Soc Am J 64(5):1616–1622

    Article  CAS  Google Scholar 

  • Jenkinson DS, Harkness DD, Vance ED, Adams DE, Harrison AF (1992) Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter. Soil Biol Biochem 24(4):295–308

    Article  Google Scholar 

  • Karlson U, Frankenberger WT Jr (1988a) Determination of gaseous selenium-75 evolved from soil. Soil Sci Soc Am J 52:678–681

    Article  CAS  Google Scholar 

  • Karlson U, Frankenberger WT Jr (1988b) Effects of carbon and trace element addition on alkylselenide production by soil. Soil Sci Soc Am J 52:1640–1648

    Article  CAS  Google Scholar 

  • Koch-Steindl H, Prohl G (2001) Considerations on the behaviour of long-lived radionuclides in the soil. Radiat Environ Bioph 40(2):93–104

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27(2–3):411–425

    Article  PubMed  CAS  Google Scholar 

  • Magid J, Kjaergaard C, Gorissen A, Kuikman PJ (1999) Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material. Soil Biol Biochem 31(4):595–602

    Article  CAS  Google Scholar 

  • Martinez CE, Jacobson AR, McBride MB (2003) Aging and temperature effects on DOC and elemental release from a metal contaminated soil. Environ Pollut 122(1):135–143

    Article  PubMed  CAS  Google Scholar 

  • Masscheleyn PH, Patrick WH Jr (1993) Biochemical processes affecting selenium cycling in wetlands. Environ Toxicol Chem 12(12):2235–2343

    CAS  Google Scholar 

  • Mobed JJ, Hemingsen SL, Sautry JL, McGown LB (1996) Flourescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ Sci Technol 30(10):3061–3065

    Article  CAS  Google Scholar 

  • Pallud C (2000) Etude du fonctionnement hydrodynamique, microbiologique, multi-échelles d’un sol soumis à un apport de solutés: application à l’ammonium et au 2,4-D. Ph.D. thesis, University of Grenoble I

  • Perrier T, Martin-Garin A, Morello M (2005) Am-241 remobilization in a calcareous soil under simplified rhizospheric conditions studied by column experiments. J Environ Radioactiv 79(2):205–221

    Article  CAS  Google Scholar 

  • Seby F, Potin Gautier M, Lespès G, Astruc M (1997) Selenium speciation in soils after alkaline extraction. Sci Total Environ 207:81–90

    Article  CAS  Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Donard OFX (1998) Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological repository of radioactive wastes to the biosphere. Analusis 26(5):193–198

    Article  CAS  Google Scholar 

  • Songsheng J, Jingru G, Shan J, Chunsheng L, Anzhi C, Ming H, Shaoyong W, Shilin L (1997) Determination of the half-life of 79Se with the accelerator mass spectrometry technique. Nucl Instrum Meth B 123(1–4):405–409

    Article  Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academic, San Diego

    Google Scholar 

  • Tate RL (1995) Soil microbiology. Wiley, New York

    Google Scholar 

  • Tokunaga TK, Lipton DS, Benson SM, Yee AW, Oldfather JM, Duckart EC, Johannis PW, Halvorsen KE (1991) Soil selenium fractionation, depth profiles and time trends in a vegetated site at Kesterson Reservoir. Water Air Soil Pollut 57–58:31–41

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Wang X, Liu X (2005) Sorption and desorption of radioselenium on calcareous soil and its solid components studied by batch and column experiments. Appl Radiat Isotopes 62(1):1–9

    Article  CAS  Google Scholar 

  • Wright MT, Parker DR, Amrhein C (2003) Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils. Environ Sci Technol 37(20):4709–4716

    Article  PubMed  CAS  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotox Environ Safe 57(3):257–269

    Article  CAS  Google Scholar 

  • Zhang Y, Moore JN (1996) Selenium fractionation and speciation in a wetland system. Environ Sci Technol 30(8):2613–2619

    Article  CAS  Google Scholar 

  • Zhang Y, Frankenberger WT, Moore JM (1999) Measurement of selenite in sediment extracts by using hydride generation atomic absorption spectrometry. Sci Total Environ 229:183–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Coppin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppin, F., Chabroullet, C., Martin-Garin, A. et al. Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium. Biol Fertil Soils 42, 379–386 (2006). https://doi.org/10.1007/s00374-006-0080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-006-0080-y

Keywords

Navigation