Skip to main content
Log in

Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In the Giessen free-air CO2 enrichment (GiFACE) experiment, 5 years of CO2 enrichment led to decreased CH4 uptake rates of the investigated meadow soil. In soils, CH4 is mainly oxidised by methanotrophic bacteria. In the present study, abundances of methanotrophic bacteria and total bacteria in soil samples from the GiFACE experiment were quantified by applying pmoA- and 16S rRNA gene-targeted real-time PCR and fluorescence in situ hybridisation (FISH). Methanotrophic bacteria of the Methylosinus group (Alphaproteobacteria) and the Methylobacter/Methylosarcina group (Gammaproteobacteria) were detectable by real-time PCR as well as by FISH. Both quantitative analytical approaches revealed that abundances of either bacteria or methanotrophic bacteria in soil samples from sites under CO2-enriched atmosphere were decreased. Compared to ambient site, only 46 and 30.5% of methanotrophic bacteria and 38 and 63.2% of total bacterial cell numbers could be detected under CO2-enriched atmosphere by FISH and real-time PCR, respectively. These results suggest that significantly decreased abundances of methanotrophic bacteria could explain reduced CH4 uptake rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amann R, Binder BJ, Olsen RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotides probes with flow cytometry analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    Google Scholar 

  • Bouvier T, del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Google Scholar 

  • Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Evol Microbiol 43:735–753

    Google Scholar 

  • Bowman JP, Sly LI, Stackebrandt E (1995) The phylogenetic position of the family Methylococcaceae. Int J Syst Evol Microbiol 45:182–185

    Google Scholar 

  • Dacey JWH, Drake BG, Klug BJ (1994) Stimulation of methane emissions by carbon dioxide enrichment of marsh vegetation. Nature 370:47–49

    Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer KH (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  PubMed  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    CAS  PubMed  Google Scholar 

  • Dedysh SN, Horz HP, Dunfield PF, Liesack W (2001a) A novel pmoA lineage represented by the acidophilic methanotrophic bacterium Methylocapsa acidophila B2. Arch Microbiol 177:117–121

    Google Scholar 

  • Dedysh SN, Derakshani M, Liesack W (2001b) Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67:4850–4857

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014

    Google Scholar 

  • Eller G, Frenzel P (2001) Changes in activity and community structure of methane-oxidizing bacteria over growth period of rice. Appl Environ Microbiol 67:2395–2403

    Google Scholar 

  • Eller G, Stubner S, Frenzel P (2001) Group-specific 16 S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198:91–97

    Article  CAS  PubMed  Google Scholar 

  • Goulding KWT, Hütsch, BW, Webster CP, Willison TW, Powlson DS (1995) The effect of agriculture on methane oxidation in soil. Philos Trans R Soc Lond A 354:313–325

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318

    Google Scholar 

  • Horz HP, Raghubanshi AS, Heyer J, Kammann C, Conrad R, Dunfield PF (2002) Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 41:247–257

    Google Scholar 

  • Hudgens DE, Yavitt JB (1997) Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York. Ecoscience 4:214–222

    Google Scholar 

  • Hütsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production—invited paper [review]. Eur J Agron 14:237–260

    Google Scholar 

  • Hutchin PR, Press MC, Lee JA, Trevor WA (1995) Elevated concentrations of CO2 may double methane emissions from mires. Global Change Biol 1:125–128

    Google Scholar 

  • Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. Plant Soil 198:89–95

    Google Scholar 

  • Jäger HJ, Schmidt SW, Kammann C, Grünhage L, Müller C, Hanewald K (2003) The University of Giessen free-air carbon dioxide enrichment study: description of the experimental site of new enrichment system. J Appl Bot 77:117–127

    Google Scholar 

  • Johnsen K, Enger O, Jacobsen CS, Thirup L, Torsvik V (1999) Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl Environ Microbiol 65:1786–1789

    Google Scholar 

  • Kammann C (2001) Die Auswirkungen steigender atmosphärischer CO2-Konzentrationen auf die Flüsse der Klimaspurengase N2O und CH4 in einem Grünlandökosystem. Justus-Liebig-Universität Giessen, Germany, doctoral thesis

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Google Scholar 

  • Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714

    Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429

    Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentrations, lifetime and climate forcing of atmospheric methane. Tellus 50B:128–150

    Google Scholar 

  • Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota at elevated atmospheric CO2 in poplar model systems. Oecologia:247–251

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Föster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Heinemeyer O (1997) CH4 and N2O fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change. Global Biogeochem Cycles 11:29–42

    Google Scholar 

  • Phillips RL, Whalen SC, Schlesinger WH (2001) Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Global Change Biol 7:557–563

    Google Scholar 

  • Raeymaekers L (2000) Basic principles of quantitative PCR. Mol Biotechnol 15:115–122

    Google Scholar 

  • Rønn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932

    Google Scholar 

  • Rønn R, Ekelund F, Christensen S (2003) Effects of elevated atmospheric CO2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant Soil 251:13–21

    Google Scholar 

  • Stubner S (2002) Enumeration of 16S rDNA of Desultomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ Detection. J Microbiol Methods 50:155–164

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MT, Taylor LT, Delong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Google Scholar 

  • Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria. Appl Environ Microbiol 59:1520–1525

    Google Scholar 

  • Zarda B, Mattison G, Hess A, Hahn D, Höhener P, Zeyer J (1998) Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS Microbiol Ecol 27:141–152

    Article  CAS  Google Scholar 

  • Ziska LH, Moya TB, Wassmann R, Namuco OS, Lantin RS, Aduna JB, Abao E, Bronson KF, Neue HU, Olszyk D (1998) Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. Global Change Biol 4:657–665

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants of the Max-Planck-Gesellschaft (Munich) and Deutsche Forschungsgemeinschaft (DFG, Bonn). Moreover, we thank M. Noll and C. Knief for critical reading and improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Jäckel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, S., Carbrera, A., Kammann, C. et al. Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biol Fertil Soils 41, 337–342 (2005). https://doi.org/10.1007/s00374-005-0842-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-005-0842-y

Keywords

Navigation