Skip to main content
Log in

Forbidden Configurations and Product Constructions

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix F, we say that a (0,1)-matrix A has F as a configuration if there is a submatrix of A which is a row and column permutation of F (trace is the set system version of a configuration). Let \({\|A\|}\) denote the number of columns of A. We define \({{\rm forb}(m, F) = {\rm max}\{\|A\| \,:\, A}\) is m-rowed simple matrix and has no configuration F. We extend this to a family \({\mathcal{F} = \{F_1, F_2, \ldots , F_t\}}\) and define \({{\rm forb}(m, \mathcal{F}) = {\rm max}\{\|A\| \,:\, A}\) is m-rowed simple matrix and has no configuration \({F \in \mathcal{F}\}}\) . We consider products of matrices. Given an m 1 × n 1 matrix A and an m 2 × n 2 matrix B, we define the product A × B as the (m 1m 2) × n 1 n 2 matrix whose columns consist of all possible combinations obtained from placing a column of A on top of a column of B. Let I k denote the k × k identity matrix, let \({I_k^{c}}\) denote the (0,1)-complement of I k and let T k denote the k × k upper triangular (0,1)-matrix with a 1 in position i, j if and only if i ≤ j. We show forb(m, {I 2 × I 2, T 2 × T 2}) is \({\Theta(m^{3/2})}\) while obtaining a linear bound when forbidding all 2-fold products of all 2 × 2 (0,1)-simple matrices. For two matrices F, P, where P is m-rowed, let \({f(F, P) = {\rm max}_{A} \{\|A\| \,:\,A}\) is m-rowed submatrix of P with no configuration F}. We establish f(I 2 × I 2, I m/2 × I m/2) is \({\Theta(m^{3/2})}\) whereas f(I 2 × T 2, I m/2 × T m/2) and f(T 2 × T 2, T m/2 × T m/2) are both \({\Theta(m)}\). Additional results are obtained. One of the results requires extensive use of a computer program. We use the results on patterns due to Marcus and Tardos and generalizations due to Klazar and Marcus, Balogh, Bollobás and Morris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstee, R.P.: A survey of forbidden configurations results. Elec. J. Comb. 20, DS20 (2013)

  2. Anstee R.P., Fleming B.: Two refinements of the bound of Sauer, Perles and Shelah and Vapnik and Chervonenkis. Discrete Math. 310, 3318–3323 (2010)

    Article  MathSciNet  Google Scholar 

  3. Anstee, R.P., Griggs, J.R., Sali, A. Small forbidden configurations. Graphs Comb. 13, 97–118 (1997)

    Google Scholar 

  4. Anstee R.P., Sali A.: Small forbidden configurations IV. Combinatorica 25, 503–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anstee, R.P., Fleming, B., Füredi, Z., Sali, A.: Color critical hypergraphs and forbidden configurations, proceedings of EuroComb 2005, Berlin, Germany. Discrete Math. Theor. Comput. Sci. AE, 117–122 (2005)

  6. Balogh J., Bollobás B.: Unavoidable traces of set systems. Combinatorica 25, 633–643 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balogh J., Bollobás B., Morris R.: Hereditary properties of partitions, ordered graphs and ordered hypergraphs. Eur. J. Comb. 8, 1263–1281 (2006)

    Article  Google Scholar 

  8. Erdős P.: On extremal problems of graphs and generalized graphs. Israel J. Math. 2, 183–190 (1964)

    Article  MathSciNet  Google Scholar 

  9. Erdős P., Simonovits M.: A limit theorem in graph theory. Studia Sci. Math. Hung. 1, 51–57 (1966)

    Google Scholar 

  10. Erdős P., Stone A.H.: On the structure of linear graphs. Bull. AMS 52, 1089–1091 (1946)

    Google Scholar 

  11. Füredi Z.: An upper bound on Zarankiewicz problem. Comb. Probab. Comput. 5, 29–33 (1996)

    Article  MATH  Google Scholar 

  12. Füredi Z., Hajnal P.: Davenport–Schinzel theory of matrices. Discrete Math. 103, 233–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klazar M., Marcus A.: Extensions of the linear bound in the Füredi–Hajnal conjecture. Adv. Appl. Math. 38, 258–266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kővari, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math 3(1954), 50–57.

    Google Scholar 

  15. Marcus A., Tardos G.: Excluded permutation matrices and the Stanley Wilf conjecture. J. Combin. Theory Ser. A 107, 153–160 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Raggi, M.: Computer code. http://www.math.ubc.ca/~anstee/FCConfThesisVersion.tar.gz

  17. Tardos G.: On 0–1 matrices and small excludedsubmatrices. J. Combin. Theory Ser. A 111, 266–288

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Sali.

Additional information

Richard P. Anstee, Research supported in part by NSERC and Hungarian National Research Fund (OTKA) Grant no. NK 78439, Christina Koch, Research supported in part by NSERC of first author, Miguel Raggi, Research supported in part by NSERC of first author, Attila Sali, Research was supported in part by Hungarian National Research Fund (OTKA) Grant No. NK 78439.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anstee, R.P., Koch, C., Raggi, M. et al. Forbidden Configurations and Product Constructions. Graphs and Combinatorics 30, 1325–1349 (2014). https://doi.org/10.1007/s00373-013-1365-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1365-1

Keywords

Navigation