Skip to main content
Log in

Human palm vein authentication using curvelet multiresolution features and score level fusion

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Human authentication plays a crucial role in sensitive applications like ATM usage, entry into a secured area, attendance and many more. A novel human authentication system is proposed by extracting curvelet multiresolution features from the palm vein trait. The entire palm region is extracted by using an improved bounding rectangle strategy and is further enhanced using Difference of Gaussian (DoG) and Histogram Equalization (HE) methods in order to make the vein pattern, more prominent. Curvelet, a multiresolution transform which handles curve discontinuities well is applied with five scales and sixteen orientations over the enhanced palm vein region. Standard deviation and mean features are calculated from the obtained curvelet subbands. Two scores are computed from these individual features and finally fused using weighted sum rule. The experiments are conducted in publicly available CASIA and VERA palm vein databases which results with the recognition rate of 99.7% and 99.86%, respectively. The proposed system achieved the lowest equal error rate (EER) of 0.021% and 0.0207%, respectively, for CASIA and VERA palm vein database as compared with other state-of-the-art methods. The system performance measured in terms of computation time took a maximum of 0.09 s in identifying an individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jain, A.K., Bolle, R., Pankanti, S.: Biometrics personal identification in networked society. Kluwer Academic Publishers, New York (1999)

    Google Scholar 

  2. MacGregor, P., Welford, R.: Veincheck: Imaging for security and personnel identification. Adv. Imag. 6(7), 52–56 (1991)

    Google Scholar 

  3. Hawkes, P.L., Clayden, D.O.: Veincheck research for automatic identification of people. Hand Fingerpr. Semin. NPL. 230–236 (1993).

  4. Jian-Gang, W., Wei-Yun, Y., Suwandy, A., Sung, E.: Fusion of palmprint and palm vein images for person recognition based on ‘Laplacianpalm’ feature. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 41(5), 1–8 (2007).

  5. Kong, A.W.K., Zhang, D.: Competitive coding scheme for palmprint verification. Pattern Recogn. Conf. 521, 520–523 (2004)

    Google Scholar 

  6. Masaki Watanabe, T. E., Shiohara, M., Sasaki, S.: Palm vein authentication technology and its applications. Biomet. Consort. Conf. USA. pp 1–2 (2005).

  7. Kumar, A., Hanmandlu, M., Gupta, H. M.: Online biometric authentication using hand vein patterns. Comput. Intel. Sec. Def. Appl. Conf. pp 1–7 (2009)

  8. Wang, J.G., Yau, W.Y., Suwandy, A., Sung, E.: Person recognition by fusing palmprint and palm vein images based on Laplacianpalm representation. Pattern Recogn. 41, 1514–1527 (2008)

    Article  Google Scholar 

  9. Cross, J. M., Smith, C. L.: Thermographic imaging of subcutaneous vascular network of the back of the hand for biometric identification. In: IEEE 29th international carnahan conference on security technology, Sanderstead, Surrey, England (1995)

  10. Lin, C.L., Fan, K.C.: Biometric verification using thermal images of Palm-Dorsa Vein Patterns. IEEE Trans. Circ. Syst. Video Technol. 14(2), 199–213 (2004)

    Article  Google Scholar 

  11. Su, C.L.: Palm extraction and identification. Exp. Syst. Appl. 36, 1082–1091 (2009)

    Article  Google Scholar 

  12. Kumar, A., Venkata Prathyusha, K.: Personal authentication using hand vein triangulation and knuckle shape. IEEE Trans. Image Process. 18(9), 2127–2136 (2009)

    Article  MathSciNet  Google Scholar 

  13. Zhou, Y., Kumar, A.: Human identification using palm-vein images. IEEE Trans. Inform. Forens. Sec. 6(4), 1259–1274 (2011)

    Article  Google Scholar 

  14. CASIA-Multispectral-Palmprint V1 dataset. http://biometrics.idealtest.org/. Accessed 07 June 2016

  15. Zhang, D., Guo, Z., Lu, G., Zhang, L., Zuo, W.: An online system of multispectral palmprint verification. IEEE Trans. Instrum. Meas. 59(2), 480–490 (2010)

    Article  Google Scholar 

  16. PolyU multi spectral palmprint database. http://www4.comp.polyu.edu.hk/biometrics/MultispectralPalmprint/MSP.htm

  17. Han, W., Lee, J.: Palm vein recognition using adaptive Gabor filter. Exp. Syst. Appl. 39, 13225–13234 (2012)

    Article  Google Scholar 

  18. Lee, J.: A novel biometric system based on palm vein image. Pattern Recogn. Lett. 33, 1520–1528 (2012)

    Article  Google Scholar 

  19. Wu, K., Lee, J., Lo, T., Chang, K., Chang, C.: A secure palm vein recognition system. J. Syst. Softw. 86, 2870–2876 (2013)

    Article  Google Scholar 

  20. Kang, W., Wu, Q.: Contactless palm vein recognition using a mutual foreground-based local binary pattern. IEEE Trans. Inform. Forens. Sec. 9, 1974–1985 (2014)

    Article  Google Scholar 

  21. Yan, X., Kang, W., Deng, F., Wu, Q.: Palm vein recognition based on multi-sampling and feature-level fusion. Neurocomputing 151, 798–807 (2015)

    Article  Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  23. Ma, X., Jing, X., Huang, H., Cui, Y., Mu, J.: Palm vein recognition scheme based on an adaptive Gabor filter. IET Biomet. 6(5), 325–333 (2017)

    Article  Google Scholar 

  24. Wu, W., Elliott, S.J., Lin, S., Yuan, W.: Low-cost biometric recognition system based on NIR palm vein image. IET Biomet. 8(3), 206–214 (2018)

    Article  Google Scholar 

  25. Thapar, D., Jaswal, G., Nigam, A.: PVSNet: palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features. In: IEEE 4th international conference on identity, security, and behavior analysis (2018).

  26. Li, Q., Zeng, Y., Peng, X., Yang, K.: Curvelet-based palm vein biometric recognition. Chin. Opt. Lett. 8(6), 577–579 (2010)

    Article  Google Scholar 

  27. Sun, J., Abdulla, W.: Palm vein recognition by combining curvelet transform and gabor filter. In: Eighth China Biometric Conference, Jinan, China (2013).

  28. Zhixian, J., Qiang, L.: Palm vein recognition algorithm using curvelet and wavelet. Adv. Mater. Res. 710, 655–659 (2013)

    Article  Google Scholar 

  29. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intel. 20, 777–789 (1998)

    Article  Google Scholar 

  30. Arivazhagan, S., Raja Sekar, J., Shobana Priyadharshini, S.: Curvelet and Ridgelet-based multimodal biometric recognition system using weighted similarity approach. Def. Sci. J. 64(2), 106–114 (2014)

    Article  Google Scholar 

  31. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  32. Joardar, S., Chatterjee, A., Rakshit, A.: Real-time NIR imaging of palm dorsa subcutaneous vein pattern based biometrics: an SRC based approach. IEEE Instrum. Meas. Mag. 13–19 (2016).

  33. Candes, E.J., Donoho, D.L.: Curvelets-a surprisingly effective nonadaptive representation for objects with edge. In: Saint-malo proceedings, Vanderbilt University Press, Nashville, pp 105–120 (2000)

  34. Candes, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transform. Technical report. CalTech. pp 1–44 (2006).

  35. Candes, E.J.: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6, 197–218 (1999)

    Article  MathSciNet  Google Scholar 

  36. Candes, E.J., Donoho, D.L.: Ridgelets: the key to higher-dimensional intermittency? Philos. Trans. R. Soc. A Lond. 357, 2495–2509 (1999)

    Article  MathSciNet  Google Scholar 

  37. Sumana, I.J., Islam, M.M., Zhang, D., Lu, G.: Content based image retrieval using curvelet transform. In: IEEE international workshop on multimedia signal processing, pp 11–16 (2008).

  38. Majumdar, A.: Bangla basic character recognition using digital curvelet transform. J. Pattern Recogn. Res. 1(1), 17–26 (2007). https://doi.org/10.13176/11.27.

  39. Zhang, J., Zhang, Z., Huang, W., Lu, Y., Wang, Y.: Face recognition based on curvefaces. Int. Conf. Nat. Comput. 2, 627–631 (2007)

    Google Scholar 

  40. Jianwei, M., Gerlind, P.: The curvelet transform. IEEE Signal Process. Mag. 27(2), 118–133 (2010). https://doi.org/10.1109/MSP.2009.935453

    Article  Google Scholar 

  41. Tome, P., Marcel, S.: Palm vein database and experimental framework for reproducible research. In: International Conference on Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, pp 215–221 (2015).

  42. Hernandez Garcia, R., Barrientos, R.J., Rojas, C., Mora, M.: Individuals identification based on palm vein matching under a parallel environment. Appl. Sci. 9(14), 2805 (2019)

    Article  Google Scholar 

  43. Ahmad, F., Lee-Ming, C., Asif, K.: Lightweight and privacy-preserving template generation for palm-vein-based human recognition. IEEE Trans. Inform. Forens. Sec. 5, 184–194 (2020)

    Article  Google Scholar 

  44. Babalola, F.O., Bitirim, Y., Toygar, O.: Palm vein recognition through fusion of texture-based and CNN-based methods. Signal Image Video Process. (2020). https://doi.org/10.1007/s11760-020-01765-6

    Article  Google Scholar 

  45. Xu, N., Zhu, Q., Xu, X., Zhang, D.: An effective recognition approach for contactless palmprint. Vis. Comput. 37(4), 695–705 (2021). https://doi.org/10.1007/s00371-020-01962-x

    Article  Google Scholar 

  46. Sayeed, F., Hanmandlu, M., Ansari, A.Q.: Face recognition using segmental Euclidean distance. Def. Sci. J. 61(5), 431–442 (2011)

    Article  Google Scholar 

  47. Liao, X., Yin, J., Chen, M., Qin, Z.: Adaptive payload distribution in multiple images steganography based on image texture features. IEEE Trans. Depend. Sec. Comput. 1, 1–1 (2020). https://doi.org/10.1109/TDSC.2020.3004708

    Article  Google Scholar 

  48. Liao, X., Li, K., Zhu, X., Liu, K.J.R.: Robust detection of image operator chain with two-stream convolutional neural network. IEEE J. Select. Top. Signal Process. 14(5), 955–968 (2020). https://doi.org/10.1109/JSTSP.2020.3002391

    Article  Google Scholar 

  49. Yang, J., Liao, X.: An embedding strategy on fusing multiple image features for data hiding in multiple images. J. Vis. Commun. Image Rep. 71, 102822 (2020). https://doi.org/10.1016/j.jvcir.2020.102822

    Article  Google Scholar 

  50. Gupta, S., Thakur, K., Kumar, M.: 2D-human face recognition using SIFT and SURF descriptors of face’s feature regions. Vis. Comput. 37, 447–456 (2021). https://doi.org/10.1007/s00371-020-01814-8

    Article  Google Scholar 

  51. Ben Fredj, H., Bouguezzi, S., Souani, C.: Face recognition in unconstrained environment with CNN. Vis. Comput. 37, 217–226 (2021). https://doi.org/10.1007/s00371-020-01794-9

    Article  Google Scholar 

  52. Qiu, Y., Hao, P.: Self-supervised deep subspace clustering network for faces in videos. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01984-5

    Article  Google Scholar 

  53. Li, C., Zhou, W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31, 1419–1429 (2015). https://doi.org/10.1007/s00371-014-1023-5

    Article  Google Scholar 

  54. Sharma, R.P., Dey, S.: Fingerprint liveness detection using local quality features. Vis. Comput. 35, 1393–1410 (2019). https://doi.org/10.1007/s00371-018-01618-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Chinese Academy of Sciences’ Institute of Automation for providing the CASIA-MS-PalmprintV1.0. One half of the work was carried out with this dataset. The authors also thank Idiap Research Institute, Martigny, Switzerland and Pedro Tome, Sebastien Marcel, the inventors of VERA Palm vein database. With this VERA Palm vein database, the authors completed another half of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ananthi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthi, G., Sekar, J.R. & Arivazhagan, S. Human palm vein authentication using curvelet multiresolution features and score level fusion. Vis Comput 38, 1901–1914 (2022). https://doi.org/10.1007/s00371-021-02253-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02253-9

Keywords

Navigation