Skip to main content
Log in

Poisson noise removal of images on graphs using tight wavelet frames

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

After many years of study, the subject of image denoising on the flat domain is well developed. However, many practical problems arising from different areas, such as computer vision, computer graphics, geometric modeling and medical imaging, involve images on the irregular domain sets such as graphs. In this paper, we consider Poisson and mixed Poisson–Gaussian noise removal of images on graphs. Based on the statistical characteristic of the observed noisy images, we propose a wavelet frame-based variational model to restore images on graphs. The model contains a weighted \(\ell _2\) fidelity term and an \(\ell _1\)-regularized term which makes additional use of the tight wavelet frame transform on graphs in order to preserve key features such as textures and edges of images. We then apply the popular alternating direction method of multipliers (ADMM) to solve the model. Finally, we provide supporting numerical experiments on graphs and compare with other denoising methods. The results on some image denoising tasks indicate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. In: Proceedings of the 18th Annual Conference on Learning Theory (COLT), pp. 486–500. Springer, (2005)

  2. Benninghoff, H., Garcke, H.: Segmentation and restoration of images on surfaces by parametric active contours with topology changes. J. Math. Imaging Vis. 55(1), 105–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertero, M., Boccacci, P., Talenti, G., Zanella, R., Zanni, L.: A discrepancy principle for Poisson data. Inverse Probl. 26(10), 105004–105023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. AK Peters, Natick (2010)

    Book  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends\(^{\textregistered }\). Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  6. Sawatzky, A., Brune, C., Kösters, T., Wübbeling, F., Burger, M.: EM-TV Methods for Inverse Problems with Poisson Noise. In: Level Set and PDE Based Reconstruction Methods in Imaging, vol 2090, pp. 71–142. Springer, Cham (2013)

  7. Cai, J.-F., Dong, B., Osher, S., Shen, Z.: Image restoration: total variation, wavelet frames, and beyond. J. Am. Math. Soc. 25(4), 1033–1089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J.-F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. SIAM Interdiscip. J. 8(2), 337–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, R.H., Chen, K.: Multilevel algorithm for a Poisson noise removal model with total variation regularization. Int. J. Comput. Math. 84(8), 1183–1198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, B.: Sparse representation on graphs by tight wavelet frames and applications. Appl. Comput. Harmon. Anal. 42(3), 452–479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, B., Jiang, Q.T., Liu, C.Q., Shen, Z.: Multiscale representation of surfaces by tight wavelet frames with applications to denoising. Appl. Comput. Harmon. Anal. 41(2), 561–589 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, B., Shen, Z.: MRA-based wavelet frames and applications. In: Zhao, H. (ed.) IAS Lecture Notes Series, Summer Program on The Mathematics of Image Processing. Park City Mathematics Institute, Salt Lake City, (2010)

  15. El Ouafdi, A.F., Ziou, D.: Global diffusion method for smoothing triangular mesh. Vis. Comput. 31(3), 295–310 (2015)

    Article  Google Scholar 

  16. Giné, E., Koltchinskii, V.: Empirical graph Laplacian approximation of Laplace–Beltrami operators: large sample results. IMS Lect. Notes Monogr. Ser. 51, 238–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldstein, T., Osher, S.: The split Bregman algorithm for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gong, Z., Shen, Z., Toh, K.: Image restoration with mixed or unknown noises. Multiscale Model. Simul. 12(2), 458–487 (2014)

    Article  MATH  Google Scholar 

  19. Hein, M. Audibert, J.-Y., Von Luxburg, U.: From graphs to manifolds-weak and strong pointwise consistency of graph Laplacians. In: Proceedings of the 18th Annual Conference on Learning Theory, pp. 470–485. Springer (2005)

  20. Jain, P., Tyagi, V.: An adaptive edge-preserving image denoising technique using tetrolet transforms. Vis. Comput. 31(5), 657–674 (2015)

    Article  Google Scholar 

  21. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Shen, Z., Yin, R., Zhang, X.: A reweighted \(\ell ^2\) method for image restoration with Poisson and mixed Poisson–Gaussian noise. Inverse Probl. Imaging 9(3), 875–894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson–Gaussian niose. IEEE Trans. Image Process. 20(3), 696–708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  25. Niyobuhungiro, J., Setterqvist, E.: A new reiterative algorithm for the Rudin–Osher–Fatemi denoising model on the graph. In: Proceedings of the 2nd International Conference on Intelligent Systems and Image Processing 2014, pp. 81–88. (2014)

  26. Ron, A., Shen, Z.: Affine systems in \(L_2(\mathbb{R}^d)\): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ron, A., Shen, Z.: Compactly supported tight affine spline frames in \(L_2(\mathbb{R}^d)\). Math. Comput. 67(221), 191–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3D Point cloud based object maps for household environments. Robot. Auton. Syst. 56(11), 927–941 (2008)

    Article  Google Scholar 

  30. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction in positron emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  31. Singer, A.: From graph to manifold Laplacian: the convergence rate. Appl. Comput. Harmon. Anal. 21(1), 128–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shuman, D.I., Vandergheynst, P., Frossard, P.: Chebyshev polynomial approximation for distributed signal processing. In: International Conference on Distributed Computing in Sensor Systems and Workshops, pp. 1–8. (2011)

  33. Staglianò, A., Boccacci, P., Bertero, M.: Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle. Inverse Probl. 27(12), 125003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, J., Stahl, D., Shen, Z.: An analysis of wavelet frame based scattered data reconstruction. Appl. Comput. Harmon. Anal. 42(3), 480–507 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, J., Wang, C.: A wavelet frame approach for removal of mixed Gaussian and impulse noise on surfaces. Inverse Probl. Imaging. 11(5), 1 (2017). doi:10.3934/ipi.2017037

  36. Zhang, B., Fadili, J.M., Starck, J.-L.: Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans. Image Process. 17(7), 1093–1108 (2008)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H., Wu, C., Zhang, J., Deng, J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. Comput. Graph. 21(7), 873–886 (2015)

    Article  Google Scholar 

  38. Zosso, D., Osting, B., Osher, S.: A dirichlet energy criterion for graph-based image segmentation. In: IEEE 15th International Conference on Data Mining Workshops, pp. 821–830. (2015)

Download references

Acknowledgements

The authors are grateful to the referees for their valuable comments and suggestions that led to the improvement of this paper. The work of Cong Wang was partially supported by the Fundamental Research Funds for the Central Universities 2015B38014; the work of Jianbin Yang was partially supported by the research grant \(\#11101120\) from NSFC and the Fundamental Research Funds for the Central Universities 2015B19514, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, J. Poisson noise removal of images on graphs using tight wavelet frames. Vis Comput 34, 1357–1369 (2018). https://doi.org/10.1007/s00371-017-1418-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1418-1

Keywords

Navigation